Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,25 @@
|
|
1 |
import spacy
|
2 |
import streamlit as st
|
|
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import PyPDF2
|
6 |
import nltk
|
7 |
from nltk.corpus import stopwords
|
8 |
from nltk.tokenize import word_tokenize
|
9 |
-
from gemini_flash import GeminiFlash #
|
10 |
|
11 |
# Ensure that NLTK's stopwords are available
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('stopwords')
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Initialize Gemini Flash for prompt engineering
|
19 |
prompt_engineer = GeminiFlash()
|
@@ -88,4 +94,3 @@ if resume_text and job_description:
|
|
88 |
# For demonstration purposes, assume a function `get_llm_response` exists that interacts with a model.
|
89 |
# response = get_llm_response(enhanced_prompt)
|
90 |
# st.write("LLM Response:", response)
|
91 |
-
|
|
|
1 |
import spacy
|
2 |
import streamlit as st
|
3 |
+
import subprocess
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import PyPDF2
|
7 |
import nltk
|
8 |
from nltk.corpus import stopwords
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
+
from gemini_flash import GeminiFlash # Adjust if Gemini Flash is available
|
11 |
|
12 |
# Ensure that NLTK's stopwords are available
|
13 |
nltk.download('punkt')
|
14 |
nltk.download('stopwords')
|
15 |
|
16 |
+
# Check if the spaCy model is already installed, if not, install it
|
17 |
+
try:
|
18 |
+
nlp = spacy.load("en_core_web_sm")
|
19 |
+
except OSError:
|
20 |
+
# Install the model if it's not available
|
21 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
22 |
+
nlp = spacy.load("en_core_web_sm")
|
23 |
|
24 |
# Initialize Gemini Flash for prompt engineering
|
25 |
prompt_engineer = GeminiFlash()
|
|
|
94 |
# For demonstration purposes, assume a function `get_llm_response` exists that interacts with a model.
|
95 |
# response = get_llm_response(enhanced_prompt)
|
96 |
# st.write("LLM Response:", response)
|
|