Draichi commited on
Commit
b19e8f3
1 Parent(s): 421855d

doc: add context to `app.py`

Browse files
Files changed (1) hide show
  1. app.py +76 -1
app.py CHANGED
@@ -83,7 +83,23 @@ async def interact_with_agent(message, history):
83
  # * Initialize Gradio
84
  theme = gr.themes.Ocean()
85
  with gr.Blocks(theme=theme, fill_height=True) as demo:
86
- gr.Markdown("# Formula 1 Briefing Generator")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  chatbot = gr.Chatbot(
88
  type="messages",
89
  label="Agent interaction",
@@ -109,6 +125,65 @@ with gr.Blocks(theme=theme, fill_height=True) as demo:
109
  btn.click(fn=interact_with_agent, inputs=[input, chatbot], outputs=chatbot)
110
  btn.click(lambda x: gr.update(value=''), [], [input])
111
  input.submit(lambda x: gr.update(value=''), [], [input])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
 
114
  demo.launch()
 
83
  # * Initialize Gradio
84
  theme = gr.themes.Ocean()
85
  with gr.Blocks(theme=theme, fill_height=True) as demo:
86
+ gr.Markdown("""# Formula 1 Briefing Generator
87
+
88
+ Welcome to the Formula 1 Briefing Generator - your AI-powered
89
+ assistant for comprehensive race analysis.
90
+ This innovative tool transforms complex Formula 1 race data into clear,
91
+ detailed reports automatically.
92
+ Whether you're interested in driver performance, tire strategies, or weather
93
+ impacts, our system analyzes telemetry data to provide insights that previously
94
+ required hours of expert analysis. This means teams, journalists, and fans
95
+ can now get instant, data-driven race breakdowns without needing technical expertise.
96
+
97
+ To use this chatbot, simply type your question in the text box below.
98
+ You can ask about specific driver performances, compare lap times between teammates,
99
+ analyze tire degradation patterns, or understand how weather conditions affected the race.
100
+ Try starting with questions like _"How did Verstappen perform in the first sector?"_ or
101
+ _"Compare the tire strategies between Mercedes drivers."_ The AI will process your request
102
+ and provide detailed answers backed by real race data.""")
103
  chatbot = gr.Chatbot(
104
  type="messages",
105
  label="Agent interaction",
 
125
  btn.click(fn=interact_with_agent, inputs=[input, chatbot], outputs=chatbot)
126
  btn.click(lambda x: gr.update(value=''), [], [input])
127
  input.submit(lambda x: gr.update(value=''), [], [input])
128
+ gr.Markdown(
129
+ """---""")
130
+ gr.Markdown("""## How We Process Formula 1 Data
131
+
132
+ This application uses advanced AI techniques to translate your natural
133
+ language questions into precise database queries:
134
+
135
+ 1. **ReAct Agent**: The system uses a ReAct (Reasoning and Acting) agent that
136
+ breaks down complex questions into logical steps. For example, when you ask about tire strategies, the agent plans how to:
137
+ - Query tire compound data
138
+ - Analyze pit stop timing
139
+ - Compare driver performances
140
+
141
+ 2. **RAG (Retrieval Augmented Generation)**: We enhance our responses by retrieving
142
+ relevant telemetry data from our Formula 1 database. This includes:
143
+ - Lap times
144
+ - Sector performances
145
+ - Tire data
146
+ - Weather conditions
147
+ - Track temperatures
148
+
149
+ 3. **Text-to-SQL Translation**: Your natural language questions are converted into SQL
150
+ queries that extract precise data from our telemetry database.
151
+ The LLM understands racing context and generates accurate queries to fetch relevant information.
152
+
153
+ This combination allows us to provide data-driven insights about any aspect of the race,
154
+ backed by real telemetry data.
155
+
156
+ ## Next Steps
157
+
158
+ We're continuously working to enhance this application's capabilities:
159
+
160
+ 1. **Expanded Race Coverage**:
161
+ - Add telemetry data from more Grand Prix events
162
+ - Include historical race data for trend analysis
163
+ - Incorporate practice and qualifying session data
164
+
165
+ 2. **Vehicle Setup Database**:
166
+ - Track car setup configurations for each team
167
+ - Monitor setup changes between sessions
168
+ - Analyze correlation between setup and performance
169
+
170
+ 3. **Simulator Integration**:
171
+ - Connect with racing simulators for predictive modeling
172
+ - Compare real telemetry with simulated data
173
+ - Test strategy scenarios in virtual environments
174
+
175
+ 4. **Enhanced AI Capabilities**:
176
+ - Fine-tune language models on racing-specific data
177
+ - Add specialized tools for aerodynamic analysis
178
+ - Implement predictive models for race strategy
179
+ - Develop visual telemetry comparison tools
180
+
181
+ 5. **Advanced Analytics**:
182
+ - Introduce machine learning for pattern recognition
183
+ - Develop tire degradation prediction models
184
+ - Add weather impact analysis tools
185
+
186
+ Checkout the source code https://github.com/Draichi/formula1-AI don't forget to star the repo!""")
187
 
188
 
189
  demo.launch()