Spaces:
Sleeping
Sleeping
Dhruv Pai Dukle
commited on
Commit
•
1947bbe
1
Parent(s):
6e76c51
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from pydub import AudioSegment
|
4 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
import torch
|
6 |
+
import whisper
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
models = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline")
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
|
11 |
+
models = models.to(device)
|
12 |
+
model = whisper.load_model("base")
|
13 |
+
|
14 |
+
st.title("Audio Analysis")
|
15 |
+
|
16 |
+
# Arguments input
|
17 |
+
st.subheader("Enter YouTube link and file name:")
|
18 |
+
url = st.text_input("YouTube link")
|
19 |
+
name = st.text_input("File name")
|
20 |
+
|
21 |
+
# Process audio and generate headings
|
22 |
+
if st.button("Process"):
|
23 |
+
if os.path.exists("audio.mp3"):
|
24 |
+
os.remove("audio.mp3")
|
25 |
+
|
26 |
+
os.system("youtube-dl "+"--write-thumbnail "+"--skip-download "+url + " -o logo.png")
|
27 |
+
os.system("yt-dlp -f 140 -o audio.mp3 " + url)
|
28 |
+
|
29 |
+
while not os.path.exists("audio.mp3"):
|
30 |
+
continue
|
31 |
+
|
32 |
+
if os.path.exists("segments"):
|
33 |
+
os.system("rm -rf segments")
|
34 |
+
|
35 |
+
audio = AudioSegment.from_file("audio.mp3")
|
36 |
+
segment_length = 30 * 1000
|
37 |
+
|
38 |
+
if not os.path.exists("segments"):
|
39 |
+
os.makedirs("segments")
|
40 |
+
|
41 |
+
for i, segment in enumerate(audio[::segment_length]):
|
42 |
+
segment.export(f"segments/{i}.mp3", format="mp3")
|
43 |
+
|
44 |
+
original_text = ""
|
45 |
+
audio_list = os.listdir("segments")
|
46 |
+
headings = []
|
47 |
+
original_texts = []
|
48 |
+
dataForWeb = {}
|
49 |
+
|
50 |
+
for i in range(len(audio_list)):
|
51 |
+
st.write(f"Processing segment {i+1}/{len(audio_list)}")
|
52 |
+
audio = whisper.load_audio(f"segments/{i}.mp3")
|
53 |
+
audio = whisper.pad_or_trim(audio)
|
54 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
55 |
+
_, probs = model.detect_language(mel)
|
56 |
+
options = whisper.DecodingOptions(fp16=False)
|
57 |
+
result = whisper.decode(model, mel, options)
|
58 |
+
|
59 |
+
text = "headline: " + result.text
|
60 |
+
max_len = 256
|
61 |
+
encoding = tokenizer.encode_plus(text, return_tensors="pt")
|
62 |
+
input_ids = encoding["input_ids"].to(device)
|
63 |
+
attention_masks = encoding["attention_mask"].to(device)
|
64 |
+
beam_outputs = models.generate(
|
65 |
+
input_ids=input_ids,
|
66 |
+
attention_mask=attention_masks,
|
67 |
+
max_length=64,
|
68 |
+
num_beams=3,
|
69 |
+
early_stopping=True,
|
70 |
+
)
|
71 |
+
generated_heading = tokenizer.decode(beam_outputs[0])
|
72 |
+
headings.append(generated_heading)
|
73 |
+
original_texts.append(result.text)
|
74 |
+
dataForWeb[i] = {
|
75 |
+
"heading": generated_heading,
|
76 |
+
"text": result.text
|
77 |
+
}
|
78 |
+
|
79 |
+
original_text += "\n"
|
80 |
+
original_text += "<h3>" + generated_heading + "</h3>"
|
81 |
+
original_text += "\n"
|
82 |
+
original_text += "<p>" + result.text + "</p>"
|
83 |
+
|
84 |
+
with open(name, "w") as f:
|
85 |
+
f.write(original_text)
|
86 |
+
|
87 |
+
st.success("Audio processing completed!")
|
88 |
+
|
89 |
+
# Display results
|
90 |
+
st.subheader("Generated Headings and Text:")
|
91 |
+
for i, heading in enumerate(headings):
|
92 |
+
st.write(f"Segment {i+1}:")
|
93 |
+
st.write("Heading:", heading)
|
94 |
+
st.write("Text:", original_texts[i])
|
95 |
+
st.write("-----------")
|