Spaces:
Runtime error
Runtime error
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
import sentencepiece | |
import streamlit as st | |
import pandas as pd | |
text_1 = "Patiente atteinte d’une pathologie chronique" | |
text_2 = "Vous êtes amené à prendre en charge un homme de 54 ans qui souffre d’une spondylarthrite ankylosante sévère." | |
st.title("Demo for Biomedical POS Tagging in French with DrBERT") | |
st.sidebar.write("Model : DrBERT-7GB base CAS corpus POS tagging") | |
st.sidebar.write("For details of model: 'https://huggingface.co/Dr-BERT/DrBERT-7GB'") | |
model_checkpoint = "Dr-BERT/CAS-Biomedical-POS-Tagging" | |
aggregation = "simple" | |
st.subheader("Select Text") | |
context_1 = st.text_area("Text #1", text_1, height=128) | |
context_2 = st.text_area("Text #2", text_2, height=128) | |
context_3 = st.text_area("New Text", value="", height=128) | |
context = st.radio("Select Text", ("Text #1", "Text #2", "New Text")) | |
if context == "Text #1": | |
input_text = context_1 | |
elif context == "Text #2": | |
input_text = context_2 | |
elif context == "New Text": | |
input_text = context_3 | |
def setModel(model_checkpoint, aggregation): | |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation), model.config.id2label | |
Run_Button = st.button("Run", key=None) | |
if Run_Button == True: | |
ner_pipeline, id2label = setModel(model_checkpoint, aggregation) | |
output = ner_pipeline(input_text) | |
# print(id2label) | |
# output_new = [] | |
# for o in output: | |
# o["entity_group"] = id2label[int(o["entity_group"].split("_")[-1])] | |
# output_new.append(o) | |
df = pd.DataFrame.from_dict(output) | |
if aggregation != "none": | |
df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True) | |
else: | |
df.rename(index=str,columns={'entity_group':'POS Tag'},inplace=True) | |
cols_to_keep = ['word','POS Tag','score','start','end'] | |
df_final = df[cols_to_keep] | |
st.subheader("POS Tags") | |
st.dataframe(df_final) |