Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification | |
import torchaudio | |
# Define emotion labels and corresponding icons | |
emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"] | |
emotion_icons = { | |
"angry": "π ", "calm": "π", "disgust": "π€’", "fearful": "π¨", | |
"happy": "π", "neutral": "π", "sad": "π’", "surprised": "π²" | |
} | |
# Load model and processor | |
model_name = "Dpngtm/wav2vec2-emotion-recognition" | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels)) | |
# Set device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
model.eval() | |
def recognize_emotion(audio): | |
try: | |
# Handle case where no audio is provided | |
if audio is None: | |
return {f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels} | |
# Load and preprocess the audio | |
audio_path = audio if isinstance(audio, str) else audio.name | |
speech_array, sampling_rate = torchaudio.load(audio_path) | |
# Limit audio length to 1 minute (60 seconds) | |
duration = speech_array.shape[1] / sampling_rate | |
if duration > 60: | |
return { | |
"Error": "Audio too long (max 1 minute)", | |
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels} | |
} | |
# Resample audio if not at 16kHz | |
if sampling_rate != 16000: | |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) | |
speech_array = resampler(speech_array) | |
# Convert stereo to mono if necessary | |
if speech_array.shape[0] > 1: | |
speech_array = torch.mean(speech_array, dim=0, keepdim=True) | |
# Normalize audio | |
speech_array = speech_array / torch.max(torch.abs(speech_array)) | |
speech_array = speech_array.squeeze().numpy() | |
# Process audio with the model | |
inputs = processor(speech_array, sampling_rate=16000, return_tensors='pt', padding=True) | |
input_values = inputs.input_values.to(device) | |
with torch.no_grad(): | |
outputs = model(input_values) | |
logits = outputs.logits | |
probs = F.softmax(logits, dim=-1)[0].cpu().numpy() | |
# Prepare the confidence scores without converting to percentages | |
confidence_scores = { | |
f"{emotion} {emotion_icons[emotion]}": prob | |
for emotion, prob in zip(emotion_labels, probs) | |
} | |
# Sort scores in descending order | |
sorted_scores = dict(sorted(confidence_scores.items(), key=lambda x: x[1], reverse=True)) | |
return sorted_scores | |
except Exception as e: | |
# Return error message along with zeroed-out emotion scores | |
return { | |
"Error": str(e), | |
**{f"{emotion} {emotion_icons[emotion]}": 0.0 for emotion in emotion_labels} | |
} | |
# Supported emotions for display | |
supported_emotions = " | ".join([f"{emotion_icons[emotion]} {emotion}" for emotion in emotion_labels]) | |
# Gradio Interface setup | |
interface = gr.Interface( | |
fn=recognize_emotion, | |
inputs=gr.Audio( | |
sources=["microphone", "upload"], | |
type="filepath", | |
label="Record or Upload Audio" | |
), | |
outputs=gr.Label( | |
num_top_classes=len(emotion_labels), | |
label="Detected Emotion" | |
), | |
title="Speech Emotion Recognition", | |
description=f""" | |
### Supported Emotions: | |
{supported_emotions} | |
Maximum audio length: 1 minute""", | |
theme=gr.themes.Soft( | |
primary_hue="orange", | |
secondary_hue="blue" | |
), | |
css=""" | |
.gradio-container {max-width: 800px} | |
.label {font-size: 18px} | |
""" | |
) | |
if __name__ == "__main__": | |
interface.launch( | |
share=True, | |
debug=True, | |
server_name="0.0.0.0", | |
server_port=7860 | |
) | |