|
|
|
""" |
|
Created on Mon Dec 25 18:18:27 2023 |
|
|
|
@author: alish |
|
""" |
|
|
|
import gradio as gr |
|
import fitz |
|
import questiongenerator as qs |
|
import random |
|
|
|
from sentence_transformers import SentenceTransformer, util |
|
from questiongenerator import QuestionGenerator |
|
qg = QuestionGenerator() |
|
|
|
|
|
|
|
def highlight_similar_sentence(text1, text2, color='yellow'): |
|
|
|
model = SentenceTransformer("paraphrase-MiniLM-L6-v2") |
|
|
|
|
|
sentences_text1 = [sentence.strip() for sentence in text1.split('.') if sentence.strip()] |
|
sentences_text2 = [sentence.strip() for sentence in text2.split('.') if sentence.strip()] |
|
|
|
|
|
|
|
|
|
highlighted_text2 = text2 |
|
max_similarity = 0.0 |
|
|
|
|
|
for sentence_text1 in sentences_text1: |
|
|
|
embedding_text1 = model.encode(sentence_text1, convert_to_tensor=True) |
|
|
|
for sentence_text2 in sentences_text2: |
|
|
|
embedding_text2 = model.encode(sentence_text2, convert_to_tensor=True) |
|
similarity = util.pytorch_cos_sim(embedding_text1, embedding_text2).item() |
|
|
|
|
|
if similarity > max_similarity: |
|
max_similarity = similarity |
|
highlighted_text2= highlight_text(text2, sentence_text2, color=color) |
|
|
|
|
|
return highlighted_text2 |
|
|
|
|
|
def Extract_QA(qlist,selected_extracted_text): |
|
Q_All='' |
|
A_All='' |
|
xs=['A','B','C','D'] |
|
h_colors=['yellow', 'red', 'DodgerBlue', 'Orange', 'Violet'] |
|
for i in range(len(qlist)): |
|
question_i= qlist[i]['question'] |
|
Choices_ans= [] |
|
Choice_is_correct=[] |
|
for j in range(4): |
|
Choices_ans= Choices_ans+ [qlist[i]['answer'][j]['answer']] |
|
Choice_is_correct= Choice_is_correct+ [qlist[i]['answer'][j]['correct']] |
|
|
|
Q=f""" |
|
Q_{i+1}: {question_i} |
|
A. {Choices_ans[0]} |
|
B. {Choices_ans[1]} |
|
C. {Choices_ans[2]} |
|
D. {Choices_ans[3]} |
|
|
|
""" |
|
|
|
result = [x for x, y in zip(xs, Choice_is_correct) if y ] |
|
correct_answer= [x for x, y in zip(Choices_ans, Choice_is_correct) if y ] |
|
A= f""" |
|
<p>Answer_{i+1}: {result[0]} - {correct_answer[0]}<p> |
|
|
|
|
|
""" |
|
color= h_colors[i] |
|
|
|
A_sen= f""" The correct answer is {correct_answer[0]}.""" |
|
|
|
A= highlight_text(input_text=A, selcted_text=correct_answer[0], color=color) |
|
selected_extracted_text= highlight_similar_sentence(A_sen, selected_extracted_text, color=color) |
|
|
|
|
|
Q_All= Q_All+Q |
|
A_All=A_All+ A |
|
|
|
|
|
return (Q_All,A_All,selected_extracted_text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_text_from_pdf(pdf_file_path): |
|
|
|
global extracted_text |
|
text = [] |
|
with fitz.open(pdf_file_path) as doc: |
|
for page in doc: |
|
text.append(page.get_text()) |
|
extracted_text= '\n'.join(text) |
|
extracted_text= get_sub_text(extracted_text) |
|
|
|
return ("The pdf is uploaded Successfully from:"+ str(pdf_file_path)) |
|
|
|
qg = qs.QuestionGenerator() |
|
|
|
def get_sub_text(TXT): |
|
sub_texts= qg._split_into_segments(TXT) |
|
if isinstance(sub_texts, list): |
|
return sub_texts |
|
else: |
|
return [sub_texts] |
|
|
|
def highlight_text(input_text, selcted_text, color='yellow'): |
|
|
|
highlighted_text = input_text.replace(selcted_text, f'<span style="background-color: {color}">{selcted_text}</span>') |
|
return highlighted_text |
|
|
|
|
|
def pick_One_txt(sub_texts): |
|
global selected_extracted_text |
|
N= len(sub_texts) |
|
if N==1: |
|
selected_extracted_text= sub_texts[0] |
|
return(selected_extracted_text) |
|
|
|
random_number = random.uniform(0, N) |
|
|
|
random_number = int(random_number) |
|
selected_extracted_text= sub_texts[random_number] |
|
|
|
return(selected_extracted_text) |
|
|
|
|
|
def pipeline(NoQs): |
|
global Q,A |
|
text= selected_extracted_text |
|
qlist= qg.generate(text, num_questions=NoQs, answer_style="multiple_choice") |
|
Q,A,highligthed_text= Extract_QA(qlist,text) |
|
A= A + '\n'+highligthed_text |
|
return (Q,A) |
|
|
|
def ReurnAnswer(): |
|
return A |
|
|
|
def GetQuestion(NoQs): |
|
NoQs=int(NoQs) |
|
pick_One_txt(extracted_text) |
|
Q,A=pipeline(NoQs) |
|
return Q |
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
with gr.Row(): |
|
gr.Image("PupQuizAI.png") |
|
gr.Markdown(""" 🐶 **PupQuizAI** is an Artificial-Intelligence tool that streamlines the studying process. Simply input a text pdf that you need to study from. Then, PupQuiz will create 1-5 custom questions for you to study from each time you push 'Show Questions'. |
|
""" ) |
|
|
|
input_file=gr.UploadButton(label='Select a file!', file_types=[".pdf"]) |
|
input_file.upload(extract_text_from_pdf, input_file) |
|
|
|
Gen_Question = gr.Button(value="Show Questions") |
|
Gen_Answer = gr.Button(value="Show Answers") |
|
No_Qs= gr.Slider(minimum=1, maximum=5,value=3, step=1, label='Max # of Questions') |
|
|
|
gr.Markdown(""" 🐶 |
|
**Instructions:** |
|
* Start by selecting a 'pdf' text file you want to upload by clicking the "Select file" button. (PupQuiz currently only supports files that can have highlightable text) |
|
* Select the number of questions you want generated from the "# of Questions" selector. |
|
* Click "Show Questions" |
|
* Then, if you want answers to the questions, select "Show Answers" """ ) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(scale=2.0): |
|
|
|
question = gr.Textbox(label="Question(s)") |
|
|
|
Answer = gr.HTML(label="Answer(s)") |
|
|
|
Gen_Question.click(GetQuestion, inputs=No_Qs, outputs=question, api_name="QuestioGenerator") |
|
Gen_Answer.click(ReurnAnswer, inputs=None, outputs=Answer, api_name="QuestioGenerator") |
|
|
|
|
|
demo.launch() |