Falcon embeddings (#1149) [skip docker]
Browse files* also fix multipack for falcon and add smoke tests
* make sure to handle special tokens and added tokens for lora
* fix reference to model_type
* fix tests for falcon
* fix stray typo
* fixes for smoke tests
- examples/falcon/config-7b-lora.yml +1 -1
- examples/falcon/config-7b-qlora.yml +1 -1
- examples/falcon/config-7b.yml +1 -1
- src/axolotl/monkeypatch/falcon/__init__.py +12 -0
- src/axolotl/utils/lora_embeddings.py +2 -0
- src/axolotl/utils/models.py +23 -14
- src/axolotl/utils/trainer.py +6 -0
- tests/e2e/patched/test_falcon_samplepack.py +112 -0
- tests/e2e/patched/test_mixtral_samplepack.py +2 -2
- tests/e2e/test_falcon.py +166 -0
examples/falcon/config-7b-lora.yml
CHANGED
@@ -60,5 +60,5 @@ fsdp:
|
|
60 |
fsdp_config:
|
61 |
special_tokens:
|
62 |
pad_token: "<|endoftext|>"
|
63 |
-
bos_token: "
|
64 |
eos_token: "<|endoftext|>"
|
|
|
60 |
fsdp_config:
|
61 |
special_tokens:
|
62 |
pad_token: "<|endoftext|>"
|
63 |
+
bos_token: "<|endoftext|>"
|
64 |
eos_token: "<|endoftext|>"
|
examples/falcon/config-7b-qlora.yml
CHANGED
@@ -89,5 +89,5 @@ fsdp:
|
|
89 |
fsdp_config:
|
90 |
special_tokens:
|
91 |
pad_token: "<|endoftext|>"
|
92 |
-
bos_token: "
|
93 |
eos_token: "<|endoftext|>"
|
|
|
89 |
fsdp_config:
|
90 |
special_tokens:
|
91 |
pad_token: "<|endoftext|>"
|
92 |
+
bos_token: "<|endoftext|>"
|
93 |
eos_token: "<|endoftext|>"
|
examples/falcon/config-7b.yml
CHANGED
@@ -60,5 +60,5 @@ fsdp:
|
|
60 |
fsdp_config:
|
61 |
special_tokens:
|
62 |
pad_token: "<|endoftext|>"
|
63 |
-
bos_token: "
|
64 |
eos_token: "<|endoftext|>"
|
|
|
60 |
fsdp_config:
|
61 |
special_tokens:
|
62 |
pad_token: "<|endoftext|>"
|
63 |
+
bos_token: "<|endoftext|>"
|
64 |
eos_token: "<|endoftext|>"
|
src/axolotl/monkeypatch/falcon/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Patches to support multipack for falcon
|
3 |
+
"""
|
4 |
+
import transformers
|
5 |
+
|
6 |
+
from axolotl.monkeypatch.utils import get_unpad_data
|
7 |
+
|
8 |
+
|
9 |
+
def replace_falcon_attn_with_multipack_flash_attn():
|
10 |
+
transformers.models.falcon.modeling_falcon._get_unpad_data = ( # pylint: disable=protected-access
|
11 |
+
get_unpad_data
|
12 |
+
)
|
src/axolotl/utils/lora_embeddings.py
CHANGED
@@ -11,4 +11,6 @@ def get_linear_embedding_layers(model_type):
|
|
11 |
return ["embd.wte", "lm_head.linear"]
|
12 |
if model_type == "gpt_neox":
|
13 |
return ["embed_in", "embed_out"]
|
|
|
|
|
14 |
return ["embed_tokens", "lm_head"]
|
|
|
11 |
return ["embd.wte", "lm_head.linear"]
|
12 |
if model_type == "gpt_neox":
|
13 |
return ["embed_in", "embed_out"]
|
14 |
+
if model_type == "falcon":
|
15 |
+
return ["word_embeddings", "lm_head"]
|
16 |
return ["embed_tokens", "lm_head"]
|
src/axolotl/utils/models.py
CHANGED
@@ -334,6 +334,14 @@ def load_model(
|
|
334 |
LOG.info("patching mixtral with flash attention")
|
335 |
replace_mixtral_attn_with_multipack_flash_attn()
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
if cfg.model_config_type == "qwen2" and cfg.flash_attention and cfg.sample_packing:
|
338 |
from axolotl.monkeypatch.qwen2 import (
|
339 |
replace_qwen2_attn_with_multipack_flash_attn,
|
@@ -434,18 +442,13 @@ def load_model(
|
|
434 |
if not cfg.sample_packing:
|
435 |
if cfg.s2_attention:
|
436 |
pass
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
):
|
443 |
-
model_kwargs["attn_implementation"] = "flash_attention_2"
|
444 |
-
model_config._attn_implementation = ( # pylint: disable=protected-access
|
445 |
-
"flash_attention_2"
|
446 |
-
)
|
447 |
else:
|
448 |
-
if model_config.model_type in ["mixtral", "qwen2"]:
|
449 |
model_kwargs["attn_implementation"] = "flash_attention_2"
|
450 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
451 |
"flash_attention_2"
|
@@ -461,7 +464,11 @@ def load_model(
|
|
461 |
model_config.fused_dense = True
|
462 |
|
463 |
try:
|
464 |
-
if
|
|
|
|
|
|
|
|
|
465 |
from transformers import LlamaForCausalLM
|
466 |
|
467 |
model = LlamaForCausalLM.from_pretrained(
|
@@ -755,8 +762,10 @@ def find_all_linear_names(model):
|
|
755 |
names = name.split(".")
|
756 |
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
757 |
|
758 |
-
|
759 |
-
|
|
|
|
|
760 |
|
761 |
return list(lora_module_names)
|
762 |
|
|
|
334 |
LOG.info("patching mixtral with flash attention")
|
335 |
replace_mixtral_attn_with_multipack_flash_attn()
|
336 |
|
337 |
+
if cfg.model_config_type == "falcon" and cfg.flash_attention and cfg.sample_packing:
|
338 |
+
from axolotl.monkeypatch.falcon import (
|
339 |
+
replace_falcon_attn_with_multipack_flash_attn,
|
340 |
+
)
|
341 |
+
|
342 |
+
LOG.info("patching falcon with flash attention")
|
343 |
+
replace_falcon_attn_with_multipack_flash_attn()
|
344 |
+
|
345 |
if cfg.model_config_type == "qwen2" and cfg.flash_attention and cfg.sample_packing:
|
346 |
from axolotl.monkeypatch.qwen2 import (
|
347 |
replace_qwen2_attn_with_multipack_flash_attn,
|
|
|
442 |
if not cfg.sample_packing:
|
443 |
if cfg.s2_attention:
|
444 |
pass
|
445 |
+
# most other models support flash attention, we can define exceptions as they come up
|
446 |
+
model_kwargs["attn_implementation"] = "flash_attention_2"
|
447 |
+
model_config._attn_implementation = ( # pylint: disable=protected-access
|
448 |
+
"flash_attention_2"
|
449 |
+
)
|
|
|
|
|
|
|
|
|
|
|
450 |
else:
|
451 |
+
if model_config.model_type in ["mixtral", "qwen2", "falcon"]:
|
452 |
model_kwargs["attn_implementation"] = "flash_attention_2"
|
453 |
model_config._attn_implementation = ( # pylint: disable=protected-access
|
454 |
"flash_attention_2"
|
|
|
464 |
model_config.fused_dense = True
|
465 |
|
466 |
try:
|
467 |
+
if (
|
468 |
+
model_config.model_type == "llama"
|
469 |
+
and not cfg.trust_remote_code
|
470 |
+
and not cfg.gptq
|
471 |
+
):
|
472 |
from transformers import LlamaForCausalLM
|
473 |
|
474 |
model = LlamaForCausalLM.from_pretrained(
|
|
|
762 |
names = name.split(".")
|
763 |
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
764 |
|
765 |
+
embedding_modules = get_linear_embedding_layers(model.config.model_type)
|
766 |
+
output_embedding = embedding_modules[1]
|
767 |
+
if output_embedding in lora_module_names: # needed for 16-bit
|
768 |
+
lora_module_names.remove(output_embedding)
|
769 |
|
770 |
return list(lora_module_names)
|
771 |
|
src/axolotl/utils/trainer.py
CHANGED
@@ -124,6 +124,12 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
124 |
if eval_dataset:
|
125 |
eval_dataset = eval_dataset.remove_columns("attention_mask")
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
train_dataset = train_dataset.filter(
|
128 |
drop_long,
|
129 |
num_proc=cfg.dataset_processes,
|
|
|
124 |
if eval_dataset:
|
125 |
eval_dataset = eval_dataset.remove_columns("attention_mask")
|
126 |
|
127 |
+
if cfg.model_config_type == "falcon":
|
128 |
+
LOG.info("dropping token_type_ids column")
|
129 |
+
train_dataset = train_dataset.remove_columns("token_type_ids")
|
130 |
+
if eval_dataset:
|
131 |
+
eval_dataset = eval_dataset.remove_columns("token_type_ids")
|
132 |
+
|
133 |
train_dataset = train_dataset.filter(
|
134 |
drop_long,
|
135 |
num_proc=cfg.dataset_processes,
|
tests/e2e/patched/test_falcon_samplepack.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
E2E tests for falcon
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import unittest
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from axolotl.cli import load_datasets
|
11 |
+
from axolotl.common.cli import TrainerCliArgs
|
12 |
+
from axolotl.train import train
|
13 |
+
from axolotl.utils.config import normalize_config
|
14 |
+
from axolotl.utils.dict import DictDefault
|
15 |
+
|
16 |
+
from ..utils import with_temp_dir
|
17 |
+
|
18 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
19 |
+
os.environ["WANDB_DISABLED"] = "true"
|
20 |
+
|
21 |
+
|
22 |
+
class TestFalconPatched(unittest.TestCase):
|
23 |
+
"""
|
24 |
+
Test case for Falcon models
|
25 |
+
"""
|
26 |
+
|
27 |
+
@with_temp_dir
|
28 |
+
def test_qlora(self, temp_dir):
|
29 |
+
# pylint: disable=duplicate-code
|
30 |
+
cfg = DictDefault(
|
31 |
+
{
|
32 |
+
"base_model": "illuin/tiny-random-FalconForCausalLM",
|
33 |
+
"flash_attention": True,
|
34 |
+
"sample_packing": True,
|
35 |
+
"sequence_len": 2048,
|
36 |
+
"load_in_4bit": True,
|
37 |
+
"adapter": "qlora",
|
38 |
+
"lora_r": 16,
|
39 |
+
"lora_alpha": 32,
|
40 |
+
"lora_dropout": 0.1,
|
41 |
+
"lora_target_linear": True,
|
42 |
+
"lora_modules_to_save": ["word_embeddings", "lm_head"],
|
43 |
+
"val_set_size": 0.1,
|
44 |
+
"special_tokens": {
|
45 |
+
"bos_token": "<|endoftext|>",
|
46 |
+
"pad_token": "<|endoftext|>",
|
47 |
+
},
|
48 |
+
"datasets": [
|
49 |
+
{
|
50 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
51 |
+
"type": "alpaca",
|
52 |
+
},
|
53 |
+
],
|
54 |
+
"num_epochs": 2,
|
55 |
+
"micro_batch_size": 2,
|
56 |
+
"gradient_accumulation_steps": 1,
|
57 |
+
"output_dir": temp_dir,
|
58 |
+
"learning_rate": 0.00001,
|
59 |
+
"optimizer": "adamw_bnb_8bit",
|
60 |
+
"lr_scheduler": "cosine",
|
61 |
+
"max_steps": 20,
|
62 |
+
"save_steps": 10,
|
63 |
+
"eval_steps": 10,
|
64 |
+
"bf16": "auto",
|
65 |
+
}
|
66 |
+
)
|
67 |
+
normalize_config(cfg)
|
68 |
+
cli_args = TrainerCliArgs()
|
69 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
70 |
+
|
71 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
72 |
+
assert (Path(temp_dir) / "adapter_model.bin").exists()
|
73 |
+
|
74 |
+
@with_temp_dir
|
75 |
+
def test_ft(self, temp_dir):
|
76 |
+
# pylint: disable=duplicate-code
|
77 |
+
cfg = DictDefault(
|
78 |
+
{
|
79 |
+
"base_model": "illuin/tiny-random-FalconForCausalLM",
|
80 |
+
"flash_attention": True,
|
81 |
+
"sample_packing": True,
|
82 |
+
"sequence_len": 2048,
|
83 |
+
"val_set_size": 0.1,
|
84 |
+
"special_tokens": {
|
85 |
+
"bos_token": "<|endoftext|>",
|
86 |
+
"pad_token": "<|endoftext|>",
|
87 |
+
},
|
88 |
+
"datasets": [
|
89 |
+
{
|
90 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
91 |
+
"type": "alpaca",
|
92 |
+
},
|
93 |
+
],
|
94 |
+
"num_epochs": 2,
|
95 |
+
"micro_batch_size": 2,
|
96 |
+
"gradient_accumulation_steps": 1,
|
97 |
+
"output_dir": temp_dir,
|
98 |
+
"learning_rate": 0.00001,
|
99 |
+
"optimizer": "adamw_bnb_8bit",
|
100 |
+
"lr_scheduler": "cosine",
|
101 |
+
"max_steps": 20,
|
102 |
+
"save_steps": 10,
|
103 |
+
"eval_steps": 10,
|
104 |
+
"bf16": "auto",
|
105 |
+
}
|
106 |
+
)
|
107 |
+
normalize_config(cfg)
|
108 |
+
cli_args = TrainerCliArgs()
|
109 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
110 |
+
|
111 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
112 |
+
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|
tests/e2e/patched/test_mixtral_samplepack.py
CHANGED
@@ -32,6 +32,7 @@ class TestMixtral(unittest.TestCase):
|
|
32 |
"base_model": "hf-internal-testing/Mixtral-tiny",
|
33 |
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
|
34 |
"flash_attention": True,
|
|
|
35 |
"sequence_len": 2048,
|
36 |
"load_in_4bit": True,
|
37 |
"adapter": "qlora",
|
@@ -57,7 +58,6 @@ class TestMixtral(unittest.TestCase):
|
|
57 |
"max_steps": 20,
|
58 |
"save_steps": 10,
|
59 |
"eval_steps": 10,
|
60 |
-
"sample_packing": True,
|
61 |
"bf16": "auto",
|
62 |
}
|
63 |
)
|
@@ -76,6 +76,7 @@ class TestMixtral(unittest.TestCase):
|
|
76 |
"base_model": "hf-internal-testing/Mixtral-tiny",
|
77 |
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
|
78 |
"flash_attention": True,
|
|
|
79 |
"sequence_len": 2048,
|
80 |
"val_set_size": 0.1,
|
81 |
"special_tokens": {},
|
@@ -95,7 +96,6 @@ class TestMixtral(unittest.TestCase):
|
|
95 |
"max_steps": 20,
|
96 |
"save_steps": 10,
|
97 |
"eval_steps": 10,
|
98 |
-
"sample_packing": True,
|
99 |
"bf16": "auto",
|
100 |
}
|
101 |
)
|
|
|
32 |
"base_model": "hf-internal-testing/Mixtral-tiny",
|
33 |
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
|
34 |
"flash_attention": True,
|
35 |
+
"sample_packing": True,
|
36 |
"sequence_len": 2048,
|
37 |
"load_in_4bit": True,
|
38 |
"adapter": "qlora",
|
|
|
58 |
"max_steps": 20,
|
59 |
"save_steps": 10,
|
60 |
"eval_steps": 10,
|
|
|
61 |
"bf16": "auto",
|
62 |
}
|
63 |
)
|
|
|
76 |
"base_model": "hf-internal-testing/Mixtral-tiny",
|
77 |
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
|
78 |
"flash_attention": True,
|
79 |
+
"sample_packing": True,
|
80 |
"sequence_len": 2048,
|
81 |
"val_set_size": 0.1,
|
82 |
"special_tokens": {},
|
|
|
96 |
"max_steps": 20,
|
97 |
"save_steps": 10,
|
98 |
"eval_steps": 10,
|
|
|
99 |
"bf16": "auto",
|
100 |
}
|
101 |
)
|
tests/e2e/test_falcon.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
E2E tests for falcon
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import unittest
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from axolotl.cli import load_datasets
|
11 |
+
from axolotl.common.cli import TrainerCliArgs
|
12 |
+
from axolotl.train import train
|
13 |
+
from axolotl.utils.config import normalize_config
|
14 |
+
from axolotl.utils.dict import DictDefault
|
15 |
+
|
16 |
+
from .utils import with_temp_dir
|
17 |
+
|
18 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
19 |
+
os.environ["WANDB_DISABLED"] = "true"
|
20 |
+
|
21 |
+
|
22 |
+
class TestFalcon(unittest.TestCase):
|
23 |
+
"""
|
24 |
+
Test case for falcon
|
25 |
+
"""
|
26 |
+
|
27 |
+
@with_temp_dir
|
28 |
+
def test_lora(self, temp_dir):
|
29 |
+
# pylint: disable=duplicate-code
|
30 |
+
cfg = DictDefault(
|
31 |
+
{
|
32 |
+
"base_model": "illuin/tiny-random-FalconForCausalLM",
|
33 |
+
"flash_attention": True,
|
34 |
+
"sequence_len": 1024,
|
35 |
+
"load_in_8bit": True,
|
36 |
+
"adapter": "lora",
|
37 |
+
"lora_r": 32,
|
38 |
+
"lora_alpha": 64,
|
39 |
+
"lora_dropout": 0.05,
|
40 |
+
"lora_target_linear": True,
|
41 |
+
"lora_modules_to_save": [
|
42 |
+
"word_embeddings",
|
43 |
+
"lm_head",
|
44 |
+
],
|
45 |
+
"val_set_size": 0.1,
|
46 |
+
"special_tokens": {
|
47 |
+
"bos_token": "<|endoftext|>",
|
48 |
+
"pad_token": "<|endoftext|>",
|
49 |
+
},
|
50 |
+
"datasets": [
|
51 |
+
{
|
52 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
53 |
+
"type": "alpaca",
|
54 |
+
},
|
55 |
+
],
|
56 |
+
"num_epochs": 2,
|
57 |
+
"micro_batch_size": 2,
|
58 |
+
"gradient_accumulation_steps": 1,
|
59 |
+
"output_dir": temp_dir,
|
60 |
+
"learning_rate": 0.00001,
|
61 |
+
"optimizer": "adamw_torch",
|
62 |
+
"lr_scheduler": "cosine",
|
63 |
+
"max_steps": 20,
|
64 |
+
"save_steps": 10,
|
65 |
+
"eval_steps": 10,
|
66 |
+
"bf16": "auto",
|
67 |
+
}
|
68 |
+
)
|
69 |
+
normalize_config(cfg)
|
70 |
+
cli_args = TrainerCliArgs()
|
71 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
72 |
+
|
73 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
74 |
+
assert (Path(temp_dir) / "adapter_model.bin").exists()
|
75 |
+
|
76 |
+
@with_temp_dir
|
77 |
+
def test_lora_added_vocab(self, temp_dir):
|
78 |
+
# pylint: disable=duplicate-code
|
79 |
+
cfg = DictDefault(
|
80 |
+
{
|
81 |
+
"base_model": "illuin/tiny-random-FalconForCausalLM",
|
82 |
+
"flash_attention": True,
|
83 |
+
"sequence_len": 1024,
|
84 |
+
"load_in_8bit": True,
|
85 |
+
"adapter": "lora",
|
86 |
+
"lora_r": 32,
|
87 |
+
"lora_alpha": 64,
|
88 |
+
"lora_dropout": 0.05,
|
89 |
+
"lora_target_linear": True,
|
90 |
+
"lora_modules_to_save": [
|
91 |
+
"word_embeddings",
|
92 |
+
"lm_head",
|
93 |
+
],
|
94 |
+
"val_set_size": 0.1,
|
95 |
+
"special_tokens": {
|
96 |
+
"bos_token": "<|endoftext|>",
|
97 |
+
"pad_token": "<|endoftext|>",
|
98 |
+
},
|
99 |
+
"tokens": [
|
100 |
+
"<|im_start|>",
|
101 |
+
"<|im_end|>",
|
102 |
+
],
|
103 |
+
"datasets": [
|
104 |
+
{
|
105 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
106 |
+
"type": "alpaca",
|
107 |
+
},
|
108 |
+
],
|
109 |
+
"num_epochs": 2,
|
110 |
+
"micro_batch_size": 2,
|
111 |
+
"gradient_accumulation_steps": 1,
|
112 |
+
"output_dir": temp_dir,
|
113 |
+
"learning_rate": 0.00001,
|
114 |
+
"optimizer": "adamw_torch",
|
115 |
+
"lr_scheduler": "cosine",
|
116 |
+
"max_steps": 20,
|
117 |
+
"save_steps": 10,
|
118 |
+
"eval_steps": 10,
|
119 |
+
"bf16": "auto",
|
120 |
+
}
|
121 |
+
)
|
122 |
+
normalize_config(cfg)
|
123 |
+
cli_args = TrainerCliArgs()
|
124 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
125 |
+
|
126 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
127 |
+
assert (Path(temp_dir) / "adapter_model.bin").exists()
|
128 |
+
|
129 |
+
@with_temp_dir
|
130 |
+
def test_ft(self, temp_dir):
|
131 |
+
# pylint: disable=duplicate-code
|
132 |
+
cfg = DictDefault(
|
133 |
+
{
|
134 |
+
"base_model": "illuin/tiny-random-FalconForCausalLM",
|
135 |
+
"flash_attention": True,
|
136 |
+
"sequence_len": 1024,
|
137 |
+
"val_set_size": 0.1,
|
138 |
+
"special_tokens": {
|
139 |
+
"bos_token": "<|endoftext|>",
|
140 |
+
"pad_token": "<|endoftext|>",
|
141 |
+
},
|
142 |
+
"datasets": [
|
143 |
+
{
|
144 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
145 |
+
"type": "alpaca",
|
146 |
+
},
|
147 |
+
],
|
148 |
+
"num_epochs": 2,
|
149 |
+
"micro_batch_size": 2,
|
150 |
+
"gradient_accumulation_steps": 1,
|
151 |
+
"output_dir": temp_dir,
|
152 |
+
"learning_rate": 0.00001,
|
153 |
+
"optimizer": "adamw_torch",
|
154 |
+
"lr_scheduler": "cosine",
|
155 |
+
"max_steps": 20,
|
156 |
+
"save_steps": 10,
|
157 |
+
"eval_steps": 10,
|
158 |
+
"bf16": "auto",
|
159 |
+
}
|
160 |
+
)
|
161 |
+
normalize_config(cfg)
|
162 |
+
cli_args = TrainerCliArgs()
|
163 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
164 |
+
|
165 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
166 |
+
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|