Add comments/alternatives for falcon-qlora configs
Browse files
examples/falcon/config-7b-qlora.yml
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
|
|
1 |
base_model: tiiuae/falcon-7b
|
2 |
base_model_config: tiiuae/falcon-7b
|
|
|
3 |
trust_remote_code: true
|
4 |
model_type: AutoModelForCausalLM
|
5 |
tokenizer_type: AutoTokenizer
|
6 |
load_in_8bit: false
|
|
|
7 |
load_in_4bit: true
|
8 |
gptq: false
|
9 |
strict: false
|
@@ -15,27 +19,47 @@ datasets:
|
|
15 |
type: "alpaca:chat"
|
16 |
dataset_prepared_path: last_run_prepared
|
17 |
val_set_size: 0.01
|
|
|
18 |
adapter: qlora
|
19 |
lora_model_dir:
|
20 |
sequence_len: 2048
|
21 |
max_packed_sequence_len:
|
|
|
|
|
|
|
22 |
lora_r: 64
|
23 |
lora_alpha: 16
|
|
|
|
|
24 |
lora_dropout: 0.05
|
|
|
25 |
lora_target_modules:
|
26 |
lora_target_linear: true
|
27 |
lora_fan_in_fan_out:
|
|
|
28 |
wandb_project: falcon-qlora
|
29 |
wandb_watch:
|
30 |
wandb_run_id:
|
31 |
wandb_log_model:
|
32 |
output_dir: ./qlora-out
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
gradient_accumulation_steps: 2
|
35 |
num_epochs: 3
|
|
|
36 |
optimizer: paged_adamw_32bit
|
37 |
torchdistx_path:
|
38 |
lr_scheduler: cosine
|
|
|
|
|
|
|
39 |
learning_rate: 0.0002
|
40 |
train_on_inputs: false
|
41 |
group_by_length: false
|
|
|
1 |
+
# 1b: tiiuae/falcon-rw-1b
|
2 |
+
# 40b: tiiuae/falcon-40b
|
3 |
base_model: tiiuae/falcon-7b
|
4 |
base_model_config: tiiuae/falcon-7b
|
5 |
+
# required by falcon custom model code: https://huggingface.co/tiiuae/falcon-7b/tree/main
|
6 |
trust_remote_code: true
|
7 |
model_type: AutoModelForCausalLM
|
8 |
tokenizer_type: AutoTokenizer
|
9 |
load_in_8bit: false
|
10 |
+
# enable 4bit for QLoRA
|
11 |
load_in_4bit: true
|
12 |
gptq: false
|
13 |
strict: false
|
|
|
19 |
type: "alpaca:chat"
|
20 |
dataset_prepared_path: last_run_prepared
|
21 |
val_set_size: 0.01
|
22 |
+
# enable QLoRA
|
23 |
adapter: qlora
|
24 |
lora_model_dir:
|
25 |
sequence_len: 2048
|
26 |
max_packed_sequence_len:
|
27 |
+
|
28 |
+
# hyperparameters from QLoRA paper Appendix B.2
|
29 |
+
# "We find hyperparameters to be largely robust across datasets"
|
30 |
lora_r: 64
|
31 |
lora_alpha: 16
|
32 |
+
# 0.1 for models up to 13B
|
33 |
+
# 0.05 for 33B and 65B models
|
34 |
lora_dropout: 0.05
|
35 |
+
# add LoRA modules on all linear layers of the base model
|
36 |
lora_target_modules:
|
37 |
lora_target_linear: true
|
38 |
lora_fan_in_fan_out:
|
39 |
+
|
40 |
wandb_project: falcon-qlora
|
41 |
wandb_watch:
|
42 |
wandb_run_id:
|
43 |
wandb_log_model:
|
44 |
output_dir: ./qlora-out
|
45 |
+
|
46 |
+
# QLoRA paper Table 9
|
47 |
+
# - 16 for 7b & 13b
|
48 |
+
# - 32 for 33b, 64 for 64b
|
49 |
+
# Max size tested on A6000
|
50 |
+
# - 7b: 40
|
51 |
+
# - 40b: 4
|
52 |
+
# decrease if OOM, increase for max VRAM utilization
|
53 |
+
micro_batch_size: 30
|
54 |
gradient_accumulation_steps: 2
|
55 |
num_epochs: 3
|
56 |
+
# Optimizer for QLoRA
|
57 |
optimizer: paged_adamw_32bit
|
58 |
torchdistx_path:
|
59 |
lr_scheduler: cosine
|
60 |
+
# QLoRA paper Table 9
|
61 |
+
# - 2e-4 for 7b & 13b
|
62 |
+
# - 1e-4 for 33b & 64b
|
63 |
learning_rate: 0.0002
|
64 |
train_on_inputs: false
|
65 |
group_by_length: false
|