Convert attrdict to addict
Browse files- requirements.txt +1 -1
- scripts/finetune.py +2 -2
- src/axolotl/utils/models.py +5 -5
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
peft @ git+https://github.com/huggingface/peft.git
|
2 |
transformers @ git+https://github.com/huggingface/transformers.git
|
3 |
bitsandbytes>=0.39.0
|
4 |
-
|
5 |
fire
|
6 |
PyYAML==6.0
|
7 |
black
|
|
|
1 |
peft @ git+https://github.com/huggingface/peft.git
|
2 |
transformers @ git+https://github.com/huggingface/transformers.git
|
3 |
bitsandbytes>=0.39.0
|
4 |
+
addict
|
5 |
fire
|
6 |
PyYAML==6.0
|
7 |
black
|
scripts/finetune.py
CHANGED
@@ -10,7 +10,7 @@ from typing import Optional, List, Dict, Any, Union
|
|
10 |
import fire
|
11 |
import torch
|
12 |
import yaml
|
13 |
-
from
|
14 |
|
15 |
# add src to the pythonpath so we don't need to pip install this
|
16 |
from axolotl.utils.tokenization import check_dataset_labels
|
@@ -131,7 +131,7 @@ def train(
|
|
131 |
|
132 |
# load the config from the yaml file
|
133 |
with open(config, "r") as f:
|
134 |
-
cfg:
|
135 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
136 |
# then overwrite the value
|
137 |
cfg_keys = dict(cfg).keys()
|
|
|
10 |
import fire
|
11 |
import torch
|
12 |
import yaml
|
13 |
+
from addict import Dict
|
14 |
|
15 |
# add src to the pythonpath so we don't need to pip install this
|
16 |
from axolotl.utils.tokenization import check_dataset_labels
|
|
|
131 |
|
132 |
# load the config from the yaml file
|
133 |
with open(config, "r") as f:
|
134 |
+
cfg: Dict = Dict(lambda: None, yaml.load(f, Loader=yaml.Loader))
|
135 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
136 |
# then overwrite the value
|
137 |
cfg_keys = dict(cfg).keys()
|
src/axolotl/utils/models.py
CHANGED
@@ -29,7 +29,7 @@ from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
|
|
29 |
|
30 |
if TYPE_CHECKING:
|
31 |
from peft import PeftModel, PeftConfig
|
32 |
-
from
|
33 |
from transformers import PreTrainedTokenizer
|
34 |
|
35 |
|
@@ -79,7 +79,7 @@ def load_model(
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
-
# type: (str, str, str, str,
|
83 |
|
84 |
# TODO refactor as a kwarg
|
85 |
load_in_8bit = cfg.load_in_8bit
|
@@ -294,7 +294,7 @@ def load_model(
|
|
294 |
|
295 |
|
296 |
def load_adapter(model, cfg, adapter):
|
297 |
-
# type: (PreTrainedModel,
|
298 |
|
299 |
if adapter is None:
|
300 |
return model, None
|
@@ -307,7 +307,7 @@ def load_adapter(model, cfg, adapter):
|
|
307 |
|
308 |
|
309 |
def load_llama_adapter(model, cfg):
|
310 |
-
# type: (PreTrainedModel,
|
311 |
from peft import (
|
312 |
AdaptionPromptConfig,
|
313 |
get_peft_model,
|
@@ -355,7 +355,7 @@ def find_all_linear_names(bits, model):
|
|
355 |
|
356 |
|
357 |
def load_lora(model, cfg):
|
358 |
-
# type: (PreTrainedModel,
|
359 |
|
360 |
from peft import (
|
361 |
LoraConfig,
|
|
|
29 |
|
30 |
if TYPE_CHECKING:
|
31 |
from peft import PeftModel, PeftConfig
|
32 |
+
from addict import Dict
|
33 |
from transformers import PreTrainedTokenizer
|
34 |
|
35 |
|
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
+
# type: (str, str, str, str, Dict, Optional[str], bool) -> Tuple[PreTrainedModel, PreTrainedTokenizer, Optional[PeftConfig]]
|
83 |
|
84 |
# TODO refactor as a kwarg
|
85 |
load_in_8bit = cfg.load_in_8bit
|
|
|
294 |
|
295 |
|
296 |
def load_adapter(model, cfg, adapter):
|
297 |
+
# type: (PreTrainedModel, Dict, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
298 |
|
299 |
if adapter is None:
|
300 |
return model, None
|
|
|
307 |
|
308 |
|
309 |
def load_llama_adapter(model, cfg):
|
310 |
+
# type: (PreTrainedModel, Dict) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
311 |
from peft import (
|
312 |
AdaptionPromptConfig,
|
313 |
get_peft_model,
|
|
|
355 |
|
356 |
|
357 |
def load_lora(model, cfg):
|
358 |
+
# type: (PreTrainedModel, Dict) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
359 |
|
360 |
from peft import (
|
361 |
LoraConfig,
|