helpful info output
Browse files- configs/llama_65B_alpaca.yml +1 -1
- requirements.txt +1 -2
- scripts/finetune.py +3 -0
configs/llama_65B_alpaca.yml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
base_model: huggyllama/llama-
|
2 |
model_type: LlamaForCausalLM
|
3 |
tokenizer_type: LlamaTokenizer
|
4 |
load_in_8bit: true
|
|
|
1 |
+
base_model: huggyllama/llama-65b
|
2 |
model_type: LlamaForCausalLM
|
3 |
tokenizer_type: LlamaTokenizer
|
4 |
load_in_8bit: true
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
git+https://github.com/huggingface/transformers.git
|
2 |
git+https://github.com/huggingface/peft.git
|
|
|
3 |
attrdict
|
4 |
fire
|
5 |
PyYAML==6.0
|
@@ -12,4 +12,3 @@ wandb
|
|
12 |
flash-attn
|
13 |
deepspeed
|
14 |
einops
|
15 |
-
|
|
|
|
|
1 |
git+https://github.com/huggingface/peft.git
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
attrdict
|
4 |
fire
|
5 |
PyYAML==6.0
|
|
|
12 |
flash-attn
|
13 |
deepspeed
|
14 |
einops
|
|
scripts/finetune.py
CHANGED
@@ -258,7 +258,9 @@ def train(
|
|
258 |
datasets = []
|
259 |
if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
|
260 |
# assumption that we are loading a previously saved/cached dataset
|
|
|
261 |
dataset = load_from_disk(cfg.datasets)
|
|
|
262 |
else:
|
263 |
for d in cfg.datasets:
|
264 |
ds: IterableDataset = load_dataset(
|
@@ -289,6 +291,7 @@ def train(
|
|
289 |
dataset = Dataset.from_list(
|
290 |
[_ for _ in constant_len_dataset]
|
291 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
|
|
292 |
dataset.save_to_disk("data/last_run")
|
293 |
|
294 |
train_dataset = dataset["train"]
|
|
|
258 |
datasets = []
|
259 |
if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
|
260 |
# assumption that we are loading a previously saved/cached dataset
|
261 |
+
print("Loading prepared dataset from disk...")
|
262 |
dataset = load_from_disk(cfg.datasets)
|
263 |
+
print("Prepared dataset loaded from disk...")
|
264 |
else:
|
265 |
for d in cfg.datasets:
|
266 |
ds: IterableDataset = load_dataset(
|
|
|
291 |
dataset = Dataset.from_list(
|
292 |
[_ for _ in constant_len_dataset]
|
293 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
294 |
+
print("Saving prepared dataset to disk...")
|
295 |
dataset.save_to_disk("data/last_run")
|
296 |
|
297 |
train_dataset = dataset["train"]
|