winglian commited on
Commit
937f44f
·
1 Parent(s): 902dd0a

helpful info output

Browse files
configs/llama_65B_alpaca.yml CHANGED
@@ -1,4 +1,4 @@
1
- base_model: huggyllama/llama-7b
2
  model_type: LlamaForCausalLM
3
  tokenizer_type: LlamaTokenizer
4
  load_in_8bit: true
 
1
+ base_model: huggyllama/llama-65b
2
  model_type: LlamaForCausalLM
3
  tokenizer_type: LlamaTokenizer
4
  load_in_8bit: true
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
- git+https://github.com/huggingface/transformers.git
2
  git+https://github.com/huggingface/peft.git
 
3
  attrdict
4
  fire
5
  PyYAML==6.0
@@ -12,4 +12,3 @@ wandb
12
  flash-attn
13
  deepspeed
14
  einops
15
-
 
 
1
  git+https://github.com/huggingface/peft.git
2
+ git+https://github.com/huggingface/transformers.git
3
  attrdict
4
  fire
5
  PyYAML==6.0
 
12
  flash-attn
13
  deepspeed
14
  einops
 
scripts/finetune.py CHANGED
@@ -258,7 +258,9 @@ def train(
258
  datasets = []
259
  if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
260
  # assumption that we are loading a previously saved/cached dataset
 
261
  dataset = load_from_disk(cfg.datasets)
 
262
  else:
263
  for d in cfg.datasets:
264
  ds: IterableDataset = load_dataset(
@@ -289,6 +291,7 @@ def train(
289
  dataset = Dataset.from_list(
290
  [_ for _ in constant_len_dataset]
291
  ).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
 
292
  dataset.save_to_disk("data/last_run")
293
 
294
  train_dataset = dataset["train"]
 
258
  datasets = []
259
  if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
260
  # assumption that we are loading a previously saved/cached dataset
261
+ print("Loading prepared dataset from disk...")
262
  dataset = load_from_disk(cfg.datasets)
263
+ print("Prepared dataset loaded from disk...")
264
  else:
265
  for d in cfg.datasets:
266
  ds: IterableDataset = load_dataset(
 
291
  dataset = Dataset.from_list(
292
  [_ for _ in constant_len_dataset]
293
  ).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
294
+ print("Saving prepared dataset to disk...")
295
  dataset.save_to_disk("data/last_run")
296
 
297
  train_dataset = dataset["train"]