Merge pull request #90 from NanoCode012/feat/addict
Browse files- .github/workflows/tests.yml +3 -1
- requirements.txt +1 -1
- scripts/finetune.py +3 -3
- src/axolotl/utils/dict.py +10 -0
- src/axolotl/utils/models.py +5 -5
- tests/test_dict.py +90 -0
.github/workflows/tests.yml
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
name: PyTest
|
2 |
-
on:
|
|
|
|
|
3 |
|
4 |
jobs:
|
5 |
test:
|
|
|
1 |
name: PyTest
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
pull_request:
|
5 |
|
6 |
jobs:
|
7 |
test:
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
peft @ git+https://github.com/huggingface/peft.git
|
2 |
transformers @ git+https://github.com/huggingface/transformers.git
|
3 |
bitsandbytes>=0.39.0
|
4 |
-
|
5 |
fire
|
6 |
PyYAML==6.0
|
7 |
black
|
|
|
1 |
peft @ git+https://github.com/huggingface/peft.git
|
2 |
transformers @ git+https://github.com/huggingface/transformers.git
|
3 |
bitsandbytes>=0.39.0
|
4 |
+
addict
|
5 |
fire
|
6 |
PyYAML==6.0
|
7 |
black
|
scripts/finetune.py
CHANGED
@@ -10,11 +10,11 @@ from typing import Optional, List, Dict, Any, Union
|
|
10 |
import fire
|
11 |
import torch
|
12 |
import yaml
|
13 |
-
from attrdict import AttrDefault
|
14 |
|
15 |
# add src to the pythonpath so we don't need to pip install this
|
16 |
from axolotl.utils.tokenization import check_dataset_labels
|
17 |
from axolotl.utils.validation import validate_config
|
|
|
18 |
|
19 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
20 |
src_dir = os.path.join(project_root, "src")
|
@@ -131,10 +131,10 @@ def train(
|
|
131 |
|
132 |
# load the config from the yaml file
|
133 |
with open(config, "r") as f:
|
134 |
-
cfg:
|
135 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
136 |
# then overwrite the value
|
137 |
-
cfg_keys =
|
138 |
for k in kwargs:
|
139 |
# if not strict, allow writing to cfg even if it's not in the yml already
|
140 |
if k in cfg_keys or cfg.strict is False:
|
|
|
10 |
import fire
|
11 |
import torch
|
12 |
import yaml
|
|
|
13 |
|
14 |
# add src to the pythonpath so we don't need to pip install this
|
15 |
from axolotl.utils.tokenization import check_dataset_labels
|
16 |
from axolotl.utils.validation import validate_config
|
17 |
+
from axolotl.utils.dict import DictDefault
|
18 |
|
19 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
20 |
src_dir = os.path.join(project_root, "src")
|
|
|
131 |
|
132 |
# load the config from the yaml file
|
133 |
with open(config, "r") as f:
|
134 |
+
cfg: DictDefault = DictDefault(yaml.load(f, Loader=yaml.Loader))
|
135 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
136 |
# then overwrite the value
|
137 |
+
cfg_keys = cfg.keys()
|
138 |
for k in kwargs:
|
139 |
# if not strict, allow writing to cfg even if it's not in the yml already
|
140 |
if k in cfg_keys or cfg.strict is False:
|
src/axolotl/utils/dict.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from addict import Dict
|
2 |
+
|
3 |
+
|
4 |
+
class DictDefault(Dict):
|
5 |
+
"""
|
6 |
+
A Dict that returns None instead of returning empty Dict for missing keys.
|
7 |
+
"""
|
8 |
+
|
9 |
+
def __missing__(self, key):
|
10 |
+
return None
|
src/axolotl/utils/models.py
CHANGED
@@ -29,7 +29,7 @@ from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
|
|
29 |
|
30 |
if TYPE_CHECKING:
|
31 |
from peft import PeftModel, PeftConfig
|
32 |
-
from
|
33 |
from transformers import PreTrainedTokenizer
|
34 |
|
35 |
|
@@ -79,7 +79,7 @@ def load_model(
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
-
# type: (str, str, str, str,
|
83 |
|
84 |
# TODO refactor as a kwarg
|
85 |
load_in_8bit = cfg.load_in_8bit
|
@@ -294,7 +294,7 @@ def load_model(
|
|
294 |
|
295 |
|
296 |
def load_adapter(model, cfg, adapter):
|
297 |
-
# type: (PreTrainedModel,
|
298 |
|
299 |
if adapter is None:
|
300 |
return model, None
|
@@ -307,7 +307,7 @@ def load_adapter(model, cfg, adapter):
|
|
307 |
|
308 |
|
309 |
def load_llama_adapter(model, cfg):
|
310 |
-
# type: (PreTrainedModel,
|
311 |
from peft import (
|
312 |
AdaptionPromptConfig,
|
313 |
get_peft_model,
|
@@ -355,7 +355,7 @@ def find_all_linear_names(bits, model):
|
|
355 |
|
356 |
|
357 |
def load_lora(model, cfg):
|
358 |
-
# type: (PreTrainedModel,
|
359 |
|
360 |
from peft import (
|
361 |
LoraConfig,
|
|
|
29 |
|
30 |
if TYPE_CHECKING:
|
31 |
from peft import PeftModel, PeftConfig
|
32 |
+
from axolotl.utils.dict import DictDefault
|
33 |
from transformers import PreTrainedTokenizer
|
34 |
|
35 |
|
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
+
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, PreTrainedTokenizer, Optional[PeftConfig]]
|
83 |
|
84 |
# TODO refactor as a kwarg
|
85 |
load_in_8bit = cfg.load_in_8bit
|
|
|
294 |
|
295 |
|
296 |
def load_adapter(model, cfg, adapter):
|
297 |
+
# type: (PreTrainedModel, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
298 |
|
299 |
if adapter is None:
|
300 |
return model, None
|
|
|
307 |
|
308 |
|
309 |
def load_llama_adapter(model, cfg):
|
310 |
+
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
311 |
from peft import (
|
312 |
AdaptionPromptConfig,
|
313 |
get_peft_model,
|
|
|
355 |
|
356 |
|
357 |
def load_lora(model, cfg):
|
358 |
+
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
359 |
|
360 |
from peft import (
|
361 |
LoraConfig,
|
tests/test_dict.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
from axolotl.utils.dict import DictDefault
|
6 |
+
|
7 |
+
|
8 |
+
class DictDefaultTest(unittest.TestCase):
|
9 |
+
def test_dict_default(self):
|
10 |
+
cfg = DictDefault(
|
11 |
+
{
|
12 |
+
"key_a": {"key_b": "value_a"},
|
13 |
+
"key_c": "value_c",
|
14 |
+
"key_d": ["value_d", "value_e"],
|
15 |
+
}
|
16 |
+
)
|
17 |
+
|
18 |
+
assert (
|
19 |
+
cfg.key_a.key_b == "value_a"
|
20 |
+
), "DictDefault should return value for existing nested keys"
|
21 |
+
|
22 |
+
assert (
|
23 |
+
cfg.key_c == "value_c"
|
24 |
+
), "DictDefault should return value for existing keys"
|
25 |
+
|
26 |
+
assert (
|
27 |
+
cfg.key_d[0] == "value_d"
|
28 |
+
), "DictDefault should return value for existing keys in list"
|
29 |
+
|
30 |
+
assert (
|
31 |
+
"value_e" in cfg.key_d
|
32 |
+
), "DictDefault should support in operator for existing keys in list"
|
33 |
+
|
34 |
+
def test_dict_or_operator(self):
|
35 |
+
cfg = DictDefault(
|
36 |
+
{
|
37 |
+
"key_a": {"key_b": "value_a"},
|
38 |
+
"key_c": "value_c",
|
39 |
+
"key_d": ["value_d", "value_e"],
|
40 |
+
"key_f": "value_f",
|
41 |
+
}
|
42 |
+
)
|
43 |
+
|
44 |
+
cfg = cfg | DictDefault({"key_a": {"key_b": "value_b"}, "key_f": "value_g"})
|
45 |
+
|
46 |
+
assert (
|
47 |
+
cfg.key_a.key_b == "value_b"
|
48 |
+
), "DictDefault should support OR operator for existing nested keys"
|
49 |
+
|
50 |
+
assert cfg.key_c == "value_c", "DictDefault should not delete existing key"
|
51 |
+
|
52 |
+
assert cfg.key_d == [
|
53 |
+
"value_d",
|
54 |
+
"value_e",
|
55 |
+
], "DictDefault should not overwrite existing keys in list"
|
56 |
+
|
57 |
+
assert (
|
58 |
+
cfg.key_f == "value_g"
|
59 |
+
), "DictDefault should support OR operator for existing key"
|
60 |
+
|
61 |
+
def test_dict_missingkey(self):
|
62 |
+
cfg = DictDefault({})
|
63 |
+
|
64 |
+
assert cfg.random_key is None, "DictDefault should return None for missing keys"
|
65 |
+
|
66 |
+
def test_dict_nested_missingparentkey(self):
|
67 |
+
"""
|
68 |
+
Due to subclassing Dict, DictDefault will error if we try to access a nested key whose parent key does not exist.
|
69 |
+
"""
|
70 |
+
cfg = DictDefault({})
|
71 |
+
|
72 |
+
with pytest.raises(
|
73 |
+
AttributeError,
|
74 |
+
match=r"'NoneType' object has no attribute 'another_random_key'",
|
75 |
+
):
|
76 |
+
cfg.random_key.another_random_key
|
77 |
+
|
78 |
+
def test_dict_shorthand_assignment(self):
|
79 |
+
"""
|
80 |
+
Shorthand assignment is said to not be supported if subclassed. However, their example raises error instead of None.
|
81 |
+
This test ensures that it is supported for current implementation.
|
82 |
+
|
83 |
+
Ref: https://github.com/mewwts/addict#default-values
|
84 |
+
"""
|
85 |
+
|
86 |
+
cfg = DictDefault({"key_a": {"key_b": "value_a"}})
|
87 |
+
|
88 |
+
cfg.key_a.key_b = "value_b"
|
89 |
+
|
90 |
+
assert cfg.key_a.key_b == "value_b", "Shorthand assignment should be supported"
|