make phi training work with Loras (#588)
Browse files* valdiation for phi loras
* fix model config class check
* update readme for phi traiing
- examples/phi/README.md +6 -2
- examples/phi/phi-qlora.yml +75 -0
- src/axolotl/utils/config.py +16 -0
- src/axolotl/utils/models.py +17 -3
examples/phi/README.md
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
# Phi
|
2 |
|
3 |
-
Due to some nuances with the phi code, please use deepspeed when training phi.
|
4 |
|
5 |
```shell
|
6 |
-
accelerate launch
|
|
|
|
|
|
|
|
|
7 |
```
|
|
|
1 |
# Phi
|
2 |
|
3 |
+
Due to some nuances with the phi code, please use deepspeed when training phi for full finetune.
|
4 |
|
5 |
```shell
|
6 |
+
accelerate launch -m axolotl.cli.train examples/phi/phi-ft.yml --deepspeed deepspeed/zero1.json
|
7 |
+
|
8 |
+
# OR
|
9 |
+
|
10 |
+
python -m axolotl.cli.train examples/phi/phi-qlora.yml
|
11 |
```
|
examples/phi/phi-qlora.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: microsoft/phi-1_5
|
2 |
+
base_model_config: microsoft/phi-1_5
|
3 |
+
model_type: AutoModelForCausalLM
|
4 |
+
tokenizer_type: AutoTokenizer
|
5 |
+
is_llama_derived_model: false
|
6 |
+
trust_remote_code: true
|
7 |
+
|
8 |
+
load_in_8bit: false
|
9 |
+
load_in_4bit: true
|
10 |
+
strict: false
|
11 |
+
|
12 |
+
datasets:
|
13 |
+
- path: garage-bAInd/Open-Platypus
|
14 |
+
type: alpaca
|
15 |
+
|
16 |
+
dataset_prepared_path: last_run_prepared
|
17 |
+
val_set_size: 0.05
|
18 |
+
output_dir: ./phi-sft-out
|
19 |
+
|
20 |
+
sequence_len: 1024
|
21 |
+
sample_packing: false # not CURRENTLY compatible with LoRAs
|
22 |
+
pad_to_sequence_len:
|
23 |
+
|
24 |
+
adapter: qlora
|
25 |
+
lora_model_dir:
|
26 |
+
lora_r: 64
|
27 |
+
lora_alpha: 32
|
28 |
+
lora_dropout: 0.05
|
29 |
+
lora_target_linear: true
|
30 |
+
lora_fan_in_fan_out:
|
31 |
+
|
32 |
+
wandb_project:
|
33 |
+
wandb_entity:
|
34 |
+
wandb_watch:
|
35 |
+
wandb_run_id:
|
36 |
+
wandb_log_model:
|
37 |
+
|
38 |
+
gradient_accumulation_steps: 1
|
39 |
+
micro_batch_size: 1
|
40 |
+
num_epochs: 4
|
41 |
+
optimizer: adamw_torch
|
42 |
+
adam_beta2: 0.95
|
43 |
+
adam_epsilon: 0.00001
|
44 |
+
max_grad_norm: 1.0
|
45 |
+
lr_scheduler: cosine
|
46 |
+
learning_rate: 0.000003
|
47 |
+
|
48 |
+
train_on_inputs: false
|
49 |
+
group_by_length: true
|
50 |
+
bf16: true
|
51 |
+
fp16: false
|
52 |
+
tf32: true
|
53 |
+
|
54 |
+
gradient_checkpointing:
|
55 |
+
early_stopping_patience:
|
56 |
+
resume_from_checkpoint:
|
57 |
+
local_rank:
|
58 |
+
logging_steps: 1
|
59 |
+
xformers_attention:
|
60 |
+
flash_attention:
|
61 |
+
|
62 |
+
warmup_steps: 100
|
63 |
+
eval_steps: 0.05
|
64 |
+
save_steps:
|
65 |
+
debug:
|
66 |
+
deepspeed:
|
67 |
+
weight_decay: 0.1
|
68 |
+
fsdp:
|
69 |
+
fsdp_config:
|
70 |
+
resize_token_embeddings_to_32x: true
|
71 |
+
special_tokens:
|
72 |
+
bos_token: "<|endoftext|>"
|
73 |
+
eos_token: "<|endoftext|>"
|
74 |
+
unk_token: "<|endoftext|>"
|
75 |
+
pad_token: "<|endoftext|>"
|
src/axolotl/utils/config.py
CHANGED
@@ -75,6 +75,7 @@ def normalize_config(cfg):
|
|
75 |
cfg.torch_dtype = torch.float32
|
76 |
|
77 |
model_config = load_model_config(cfg)
|
|
|
78 |
|
79 |
# figure out if the model is llama
|
80 |
cfg.is_llama_derived_model = (
|
@@ -237,6 +238,21 @@ def validate_config(cfg):
|
|
237 |
raise ValueError(
|
238 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
239 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
# TODO
|
241 |
# MPT 7b
|
242 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
|
|
75 |
cfg.torch_dtype = torch.float32
|
76 |
|
77 |
model_config = load_model_config(cfg)
|
78 |
+
cfg.model_config_type = model_config.model_type
|
79 |
|
80 |
# figure out if the model is llama
|
81 |
cfg.is_llama_derived_model = (
|
|
|
238 |
raise ValueError(
|
239 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
240 |
)
|
241 |
+
|
242 |
+
if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
|
243 |
+
LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")
|
244 |
+
|
245 |
+
if cfg.model_config_type == "mixformer-sequential":
|
246 |
+
if cfg.sample_packing:
|
247 |
+
if cfg.adapter is not None:
|
248 |
+
LOG.warning(
|
249 |
+
"phi/MixFormer models are not currently compatible with LoRA and sample_packing"
|
250 |
+
)
|
251 |
+
if cfg.model_type == "AutoModelForCausalLM":
|
252 |
+
raise ValueError(
|
253 |
+
"`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
|
254 |
+
)
|
255 |
+
|
256 |
# TODO
|
257 |
# MPT 7b
|
258 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
src/axolotl/utils/models.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
"""Module for models and model loading"""
|
2 |
-
|
3 |
-
|
4 |
import logging
|
5 |
import math
|
6 |
import os
|
@@ -155,11 +154,26 @@ def load_model(
|
|
155 |
LOG.info("patching _expand_mask")
|
156 |
hijack_expand_mask()
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
model_kwargs = {}
|
159 |
if cfg.model_revision:
|
160 |
model_kwargs["revision"] = cfg.model_revision
|
161 |
if cfg.gptq:
|
162 |
-
model_config = load_model_config(cfg)
|
163 |
if not hasattr(model_config, "quantization_config"):
|
164 |
LOG.warning("model config does not contain quantization_config information")
|
165 |
else:
|
|
|
1 |
"""Module for models and model loading"""
|
2 |
+
import importlib
|
|
|
3 |
import logging
|
4 |
import math
|
5 |
import os
|
|
|
154 |
LOG.info("patching _expand_mask")
|
155 |
hijack_expand_mask()
|
156 |
|
157 |
+
model_config = load_model_config(cfg)
|
158 |
+
|
159 |
+
# special handling b/c remote MixFormers code doesn't have _no_split_modules set
|
160 |
+
if (
|
161 |
+
"MixFormerSequentialConfig" in model_config.__class__.__name__
|
162 |
+
and cfg.model_type == "AutoModelForCausalLM"
|
163 |
+
):
|
164 |
+
module_name = model_config.__class__.__module__.replace(
|
165 |
+
".configuration_mixformer_sequential", ".modeling_mixformer_sequential"
|
166 |
+
)
|
167 |
+
modeling_phi = importlib.import_module(module_name)
|
168 |
+
# pylint:disable=protected-access
|
169 |
+
modeling_phi.MixFormerSequentialForCausalLM._no_split_modules = [
|
170 |
+
"ParallelBlock"
|
171 |
+
]
|
172 |
+
|
173 |
model_kwargs = {}
|
174 |
if cfg.model_revision:
|
175 |
model_kwargs["revision"] = cfg.model_revision
|
176 |
if cfg.gptq:
|
|
|
177 |
if not hasattr(model_config, "quantization_config"):
|
178 |
LOG.warning("model config does not contain quantization_config information")
|
179 |
else:
|