improve how we setup eval/save strategies and steps (#547)
Browse files* setup save end eval strategies to be consistent with trainer logic
* add comments
* better eval handling
- src/axolotl/utils/trainer.py +18 -6
src/axolotl/utils/trainer.py
CHANGED
@@ -567,21 +567,33 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
567 |
"sample_packing_efficiency"
|
568 |
] = cfg.sample_packing_eff_est
|
569 |
|
570 |
-
if cfg.
|
|
|
|
|
|
|
|
|
|
|
571 |
training_arguments_kwargs["evaluation_strategy"] = "no"
|
|
|
|
|
|
|
572 |
elif cfg.eval_steps:
|
|
|
573 |
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
574 |
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
|
575 |
else:
|
576 |
-
# we have an eval set, but no steps defined, use epoch
|
577 |
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
578 |
|
579 |
-
if cfg.
|
|
|
|
|
|
|
|
|
580 |
training_arguments_kwargs["save_strategy"] = cfg.save_strategy
|
581 |
else:
|
582 |
-
|
583 |
-
|
584 |
-
)
|
585 |
|
586 |
if cfg.do_bench_eval:
|
587 |
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval
|
|
|
567 |
"sample_packing_efficiency"
|
568 |
] = cfg.sample_packing_eff_est
|
569 |
|
570 |
+
if cfg.eval_steps and cfg.evaluation_strategy:
|
571 |
+
# assume if the user set both, they know what they're doing
|
572 |
+
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy
|
573 |
+
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
|
574 |
+
elif cfg.val_set_size == 0:
|
575 |
+
# no eval set, so don't eval
|
576 |
training_arguments_kwargs["evaluation_strategy"] = "no"
|
577 |
+
elif cfg.evaluation_strategy and cfg.evaluation_strategy in ["epoch", "no"]:
|
578 |
+
# if explicitly set for epoch, just set, and eval steps don't matter
|
579 |
+
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy
|
580 |
elif cfg.eval_steps:
|
581 |
+
# steps isn't used w/ epochs
|
582 |
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
583 |
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
|
584 |
else:
|
585 |
+
# we have an eval set, but no steps defined, default to use epoch
|
586 |
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
587 |
|
588 |
+
if cfg.save_steps:
|
589 |
+
# save_steps implies save_strategy of steps
|
590 |
+
training_arguments_kwargs["save_strategy"] = "steps"
|
591 |
+
training_arguments_kwargs["save_steps"] = cfg.save_steps
|
592 |
+
elif cfg.save_strategy:
|
593 |
training_arguments_kwargs["save_strategy"] = cfg.save_strategy
|
594 |
else:
|
595 |
+
# default to saving each epoch if not defined
|
596 |
+
training_arguments_kwargs["save_strategy"] = "epoch"
|
|
|
597 |
|
598 |
if cfg.do_bench_eval:
|
599 |
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval
|