add utils.data.prepare_dataset
Browse files- scripts/finetune.py +3 -34
- src/axolotl/utils/data.py +35 -0
scripts/finetune.py
CHANGED
@@ -19,16 +19,11 @@ from transformers import GenerationConfig, TextStreamer
|
|
19 |
|
20 |
from axolotl.logging_config import configure_logging
|
21 |
from axolotl.utils.config import normalize_config, validate_config
|
22 |
-
from axolotl.utils.data import
|
23 |
from axolotl.utils.dict import DictDefault
|
24 |
-
from axolotl.utils.distributed import is_main_process, zero_first
|
25 |
from axolotl.utils.models import load_model, load_tokenizer
|
26 |
from axolotl.utils.tokenization import check_dataset_labels
|
27 |
-
from axolotl.utils.trainer import
|
28 |
-
calculate_total_num_steps,
|
29 |
-
process_datasets_for_packing,
|
30 |
-
setup_trainer,
|
31 |
-
)
|
32 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
33 |
|
34 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
@@ -39,7 +34,6 @@ configure_logging()
|
|
39 |
LOG = logging.getLogger("axolotl.scripts")
|
40 |
|
41 |
|
42 |
-
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
43 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
44 |
|
45 |
|
@@ -183,32 +177,7 @@ def train(
|
|
183 |
if (
|
184 |
check_not_in(["shard", "merge_lora"], kwargs) and not cfg.inference
|
185 |
): # don't need to load dataset for these
|
186 |
-
|
187 |
-
train_dataset, eval_dataset = load_prepare_datasets(
|
188 |
-
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
189 |
-
)
|
190 |
-
else:
|
191 |
-
train_dataset = load_pretraining_dataset(
|
192 |
-
cfg.pretraining_dataset,
|
193 |
-
tokenizer,
|
194 |
-
max_tokens=cfg.sequence_len,
|
195 |
-
seed=cfg.seed or 42,
|
196 |
-
)
|
197 |
-
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
|
198 |
-
train_dataset = train_dataset.with_format("torch")
|
199 |
-
eval_dataset = None
|
200 |
-
|
201 |
-
with zero_first(is_main_process()):
|
202 |
-
train_dataset, eval_dataset = process_datasets_for_packing(
|
203 |
-
cfg, train_dataset, eval_dataset
|
204 |
-
)
|
205 |
-
if cfg.max_steps:
|
206 |
-
total_num_steps = min(
|
207 |
-
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
|
208 |
-
)
|
209 |
-
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
210 |
-
else:
|
211 |
-
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
|
212 |
|
213 |
if cfg.debug or "debug" in kwargs:
|
214 |
LOG.info("check_dataset_labels...")
|
|
|
19 |
|
20 |
from axolotl.logging_config import configure_logging
|
21 |
from axolotl.utils.config import normalize_config, validate_config
|
22 |
+
from axolotl.utils.data import prepare_dataset
|
23 |
from axolotl.utils.dict import DictDefault
|
|
|
24 |
from axolotl.utils.models import load_model, load_tokenizer
|
25 |
from axolotl.utils.tokenization import check_dataset_labels
|
26 |
+
from axolotl.utils.trainer import setup_trainer
|
|
|
|
|
|
|
|
|
27 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
28 |
|
29 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
|
34 |
LOG = logging.getLogger("axolotl.scripts")
|
35 |
|
36 |
|
|
|
37 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
38 |
|
39 |
|
|
|
177 |
if (
|
178 |
check_not_in(["shard", "merge_lora"], kwargs) and not cfg.inference
|
179 |
): # don't need to load dataset for these
|
180 |
+
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
if cfg.debug or "debug" in kwargs:
|
183 |
LOG.info("check_dataset_labels...")
|
src/axolotl/utils/data.py
CHANGED
@@ -42,8 +42,43 @@ from axolotl.prompters import (
|
|
42 |
SummarizeTLDRPrompter,
|
43 |
)
|
44 |
from axolotl.utils.distributed import is_main_process, zero_first
|
|
|
|
|
|
|
|
|
45 |
|
46 |
LOG = logging.getLogger("axolotl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
def load_tokenized_prepared_datasets(
|
|
|
42 |
SummarizeTLDRPrompter,
|
43 |
)
|
44 |
from axolotl.utils.distributed import is_main_process, zero_first
|
45 |
+
from axolotl.utils.trainer import (
|
46 |
+
calculate_total_num_steps,
|
47 |
+
process_datasets_for_packing,
|
48 |
+
)
|
49 |
|
50 |
LOG = logging.getLogger("axolotl")
|
51 |
+
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
52 |
+
|
53 |
+
|
54 |
+
def prepare_dataset(cfg, tokenizer):
|
55 |
+
if not cfg.pretraining_dataset:
|
56 |
+
train_dataset, eval_dataset = load_prepare_datasets(
|
57 |
+
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
train_dataset = load_pretraining_dataset(
|
61 |
+
cfg.pretraining_dataset,
|
62 |
+
tokenizer,
|
63 |
+
max_tokens=cfg.sequence_len,
|
64 |
+
seed=cfg.seed or 42,
|
65 |
+
)
|
66 |
+
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
|
67 |
+
train_dataset = train_dataset.with_format("torch")
|
68 |
+
eval_dataset = None
|
69 |
+
|
70 |
+
with zero_first(is_main_process()):
|
71 |
+
train_dataset, eval_dataset = process_datasets_for_packing(
|
72 |
+
cfg, train_dataset, eval_dataset
|
73 |
+
)
|
74 |
+
if cfg.max_steps:
|
75 |
+
total_num_steps = min(
|
76 |
+
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
|
77 |
+
)
|
78 |
+
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
79 |
+
else:
|
80 |
+
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
|
81 |
+
return train_dataset, eval_dataset, total_num_steps
|
82 |
|
83 |
|
84 |
def load_tokenized_prepared_datasets(
|