remove lora fused packing test (#758)
Browse files
tests/e2e/test_fused_llama.py
CHANGED
@@ -25,50 +25,6 @@ class TestFusedLlama(unittest.TestCase):
|
|
25 |
Test case for Llama models using Fused layers
|
26 |
"""
|
27 |
|
28 |
-
def test_lora_packing(self):
|
29 |
-
# pylint: disable=duplicate-code
|
30 |
-
output_dir = tempfile.mkdtemp()
|
31 |
-
cfg = DictDefault(
|
32 |
-
{
|
33 |
-
"base_model": "JackFram/llama-68m",
|
34 |
-
"base_model_config": "JackFram/llama-68m",
|
35 |
-
"flash_attention": True,
|
36 |
-
"flash_attn_fuse_qkv": True,
|
37 |
-
"flash_attn_fuse_mlp": True,
|
38 |
-
"sample_packing": True,
|
39 |
-
"sequence_len": 1024,
|
40 |
-
"load_in_8bit": True,
|
41 |
-
"val_set_size": 0.1,
|
42 |
-
"special_tokens": {
|
43 |
-
"unk_token": "<unk>",
|
44 |
-
"bos_token": "<s>",
|
45 |
-
"eos_token": "</s>",
|
46 |
-
},
|
47 |
-
"datasets": [
|
48 |
-
{
|
49 |
-
"path": "mhenrichsen/alpaca_2k_test",
|
50 |
-
"type": "alpaca",
|
51 |
-
},
|
52 |
-
],
|
53 |
-
"num_epochs": 2,
|
54 |
-
"micro_batch_size": 2,
|
55 |
-
"gradient_accumulation_steps": 1,
|
56 |
-
"output_dir": output_dir,
|
57 |
-
"learning_rate": 0.00001,
|
58 |
-
"optimizer": "adamw_torch",
|
59 |
-
"lr_scheduler": "cosine",
|
60 |
-
"max_steps": 20,
|
61 |
-
"save_steps": 10,
|
62 |
-
"eval_steps": 10,
|
63 |
-
}
|
64 |
-
)
|
65 |
-
normalize_config(cfg)
|
66 |
-
cli_args = TrainerCliArgs()
|
67 |
-
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
68 |
-
|
69 |
-
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
70 |
-
assert (Path(output_dir) / "pytorch_model.bin").exists()
|
71 |
-
|
72 |
def test_fft_packing(self):
|
73 |
# pylint: disable=duplicate-code
|
74 |
output_dir = tempfile.mkdtemp()
|
|
|
25 |
Test case for Llama models using Fused layers
|
26 |
"""
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def test_fft_packing(self):
|
29 |
# pylint: disable=duplicate-code
|
30 |
output_dir = tempfile.mkdtemp()
|