Merge pull request #98 from NanoCode012/feat/pre-commit
Browse files- .bandit +3 -0
- .flake8 +5 -0
- .github/workflows/pre-commit.yml +16 -0
- .gitignore +1 -1
- .isort.cfg +2 -0
- .mypy.ini +33 -0
- .pre-commit-config.yaml +42 -0
- .pylintrc +14 -0
- README.md +11 -0
- docker/Dockerfile-base +0 -1
- examples/falcon/config-7b-lora.yml +0 -1
- examples/falcon/config-7b.yml +0 -1
- requirements-dev.txt +3 -0
- requirements.txt +0 -1
- scripts/alpaca_json_to_jsonl.py +19 -5
- scripts/finetune.py +36 -28
- setup.py +4 -2
- src/axolotl/convert.py +32 -3
- src/axolotl/datasets.py +21 -11
- src/axolotl/flash_attn.py +38 -15
- src/axolotl/prompt_strategies/__init__.py +7 -5
- src/axolotl/prompt_strategies/alpaca_chat.py +11 -3
- src/axolotl/prompt_strategies/alpaca_instruct.py +3 -1
- src/axolotl/prompt_strategies/creative_acr.py +62 -12
- src/axolotl/prompt_strategies/pygmalion.py +31 -42
- src/axolotl/prompt_tokenizers.py +183 -79
- src/axolotl/prompters.py +82 -32
- src/axolotl/utils/callbacks.py +9 -5
- src/axolotl/utils/data.py +64 -43
- src/axolotl/utils/dict.py +2 -0
- src/axolotl/utils/models.py +47 -53
- src/axolotl/utils/schedulers.py +9 -1
- src/axolotl/utils/tokenization.py +6 -2
- src/axolotl/utils/trainer.py +30 -14
- src/axolotl/utils/validation.py +5 -1
- src/axolotl/utils/wandb.py +2 -0
- tests/fixtures/conversation.tokenized.json +1 -1
- tests/test_dict.py +11 -2
- tests/test_prompt_tokenizers.py +12 -2
- tests/test_prompters.py +14 -6
- tests/test_validation.py +14 -9
.bandit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[bandit]
|
2 |
+
exclude = tests
|
3 |
+
skips = B101
|
.flake8
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
max-line-length = 88
|
3 |
+
|
4 |
+
select = C,E,F,W,B,B950
|
5 |
+
extend-ignore = E203, E501, W503
|
.github/workflows/pre-commit.yml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: pre-commit
|
2 |
+
|
3 |
+
on:
|
4 |
+
pull_request:
|
5 |
+
push:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
pre-commit:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- uses: actions/checkout@v3
|
12 |
+
- uses: actions/setup-python@v4
|
13 |
+
with:
|
14 |
+
python-version: "3.9"
|
15 |
+
cache: 'pip' # caching pip dependencies
|
16 |
+
- uses: pre-commit/action@v3.0.0
|
.gitignore
CHANGED
@@ -160,4 +160,4 @@ cython_debug/
|
|
160 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
-
.idea/
|
|
|
160 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
+
.idea/
|
.isort.cfg
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[settings]
|
2 |
+
profile=black
|
.mypy.ini
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[mypy]
|
2 |
+
|
3 |
+
exclude = venv
|
4 |
+
|
5 |
+
[mypy-alpaca_lora_4bit.*]
|
6 |
+
ignore_missing_imports = True
|
7 |
+
|
8 |
+
[mypy-flash_attn.*]
|
9 |
+
ignore_missing_imports = True
|
10 |
+
|
11 |
+
[mypy-huggingface_hub]
|
12 |
+
ignore_missing_imports = True
|
13 |
+
|
14 |
+
[mypy-transformers.*]
|
15 |
+
ignore_missing_imports = True
|
16 |
+
|
17 |
+
[mypy-peft]
|
18 |
+
ignore_missing_imports = True
|
19 |
+
|
20 |
+
[mypy-bitsandbytes]
|
21 |
+
ignore_missing_imports = True
|
22 |
+
|
23 |
+
[mypy-datasets]
|
24 |
+
ignore_missing_imports = True
|
25 |
+
|
26 |
+
[mypy-fire]
|
27 |
+
ignore_missing_imports = True
|
28 |
+
|
29 |
+
[mypy-setuptools]
|
30 |
+
ignore_missing_imports = True
|
31 |
+
|
32 |
+
[mypy-addict]
|
33 |
+
ignore_missing_imports = True
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_language_version:
|
2 |
+
python: python3.9
|
3 |
+
|
4 |
+
repos:
|
5 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
6 |
+
rev: v4.4.0
|
7 |
+
hooks:
|
8 |
+
- id: check-yaml
|
9 |
+
- id: end-of-file-fixer
|
10 |
+
- id: trailing-whitespace
|
11 |
+
- repo: https://github.com/psf/black
|
12 |
+
rev: 23.3.0
|
13 |
+
hooks:
|
14 |
+
- id: black
|
15 |
+
- repo: https://github.com/pycqa/isort
|
16 |
+
rev: 5.12.0
|
17 |
+
hooks:
|
18 |
+
- id: isort
|
19 |
+
- repo: https://github.com/PyCQA/flake8
|
20 |
+
rev: 6.0.0
|
21 |
+
hooks:
|
22 |
+
- id: flake8
|
23 |
+
- repo: https://github.com/PyCQA/pylint
|
24 |
+
rev: v2.17.4
|
25 |
+
hooks:
|
26 |
+
- id: pylint
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.3.0
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
additional_dependencies:
|
32 |
+
[
|
33 |
+
'types-PyYAML',
|
34 |
+
]
|
35 |
+
- repo: https://github.com/PyCQA/bandit
|
36 |
+
rev: 1.7.5
|
37 |
+
hooks:
|
38 |
+
- id: bandit
|
39 |
+
args: [
|
40 |
+
'--ini',
|
41 |
+
'.bandit',
|
42 |
+
]
|
.pylintrc
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[MASTER]
|
2 |
+
init-hook="from pylint.config import find_pylintrc; import os, sys; sys.path.append(os.path.dirname(find_pylintrc()))"
|
3 |
+
|
4 |
+
[TYPECHECK]
|
5 |
+
|
6 |
+
# List of members which are set dynamically and missed by Pylint inference
|
7 |
+
# system, and so shouldn't trigger E1101 when accessed.
|
8 |
+
generated-members=numpy.*, torch.*
|
9 |
+
|
10 |
+
|
11 |
+
[pylint.messages_control]
|
12 |
+
disable=missing-function-docstring, line-too-long, import-error,
|
13 |
+
too-many-arguments, too-many-locals, too-many-statements, too-many-branches, too-few-public-methods,
|
14 |
+
too-many-instance-attributes, fixme, import-outside-toplevel, logging-fstring-interpolation,
|
README.md
CHANGED
@@ -9,6 +9,8 @@
|
|
9 |
<p>
|
10 |
Go ahead and axolotl questions!!
|
11 |
</p>
|
|
|
|
|
12 |
</div>
|
13 |
</div>
|
14 |
|
@@ -406,3 +408,12 @@ Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
|
|
406 |
Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new).
|
407 |
|
408 |
PRs are **greatly welcome**!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
<p>
|
10 |
Go ahead and axolotl questions!!
|
11 |
</p>
|
12 |
+
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
|
13 |
+
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
|
14 |
</div>
|
15 |
</div>
|
16 |
|
|
|
408 |
Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new).
|
409 |
|
410 |
PRs are **greatly welcome**!
|
411 |
+
|
412 |
+
Please run below to setup env
|
413 |
+
```bash
|
414 |
+
pip3 install -r requirements-dev.txt -r requirements-tests.txt
|
415 |
+
pre-commit install
|
416 |
+
|
417 |
+
# test
|
418 |
+
pytest tests/
|
419 |
+
```
|
docker/Dockerfile-base
CHANGED
@@ -99,4 +99,3 @@ RUN pip3 install "peft @ git+https://github.com/huggingface/peft.git@main" \
|
|
99 |
pip3 install awscli && \
|
100 |
# The base image ships with `pydantic==1.8.2` which is not working
|
101 |
pip3 install -U --no-cache-dir pydantic
|
102 |
-
|
|
|
99 |
pip3 install awscli && \
|
100 |
# The base image ships with `pydantic==1.8.2` which is not working
|
101 |
pip3 install -U --no-cache-dir pydantic
|
|
examples/falcon/config-7b-lora.yml
CHANGED
@@ -61,4 +61,3 @@ special_tokens:
|
|
61 |
pad_token: "<|endoftext|>"
|
62 |
bos_token: ">>ABSTRACT<<"
|
63 |
eos_token: "<|endoftext|>"
|
64 |
-
|
|
|
61 |
pad_token: "<|endoftext|>"
|
62 |
bos_token: ">>ABSTRACT<<"
|
63 |
eos_token: "<|endoftext|>"
|
|
examples/falcon/config-7b.yml
CHANGED
@@ -61,4 +61,3 @@ special_tokens:
|
|
61 |
pad_token: "<|endoftext|>"
|
62 |
bos_token: ">>ABSTRACT<<"
|
63 |
eos_token: "<|endoftext|>"
|
64 |
-
|
|
|
61 |
pad_token: "<|endoftext|>"
|
62 |
bos_token: ">>ABSTRACT<<"
|
63 |
eos_token: "<|endoftext|>"
|
|
requirements-dev.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pre-commit
|
2 |
+
black
|
3 |
+
mypy
|
requirements.txt
CHANGED
@@ -4,7 +4,6 @@ bitsandbytes>=0.39.0
|
|
4 |
addict
|
5 |
fire
|
6 |
PyYAML==6.0
|
7 |
-
black
|
8 |
datasets
|
9 |
accelerate>=0.19.0
|
10 |
sentencepiece
|
|
|
4 |
addict
|
5 |
fire
|
6 |
PyYAML==6.0
|
|
|
7 |
datasets
|
8 |
accelerate>=0.19.0
|
9 |
sentencepiece
|
scripts/alpaca_json_to_jsonl.py
CHANGED
@@ -1,24 +1,38 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
from pathlib import Path
|
|
|
4 |
|
5 |
import fire
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# add src to the pythonpath so we don't need to pip install this
|
9 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
10 |
src_dir = os.path.join(project_root, "src")
|
11 |
sys.path.insert(0, src_dir)
|
12 |
|
13 |
-
from axolotl.convert import *
|
14 |
-
|
15 |
|
16 |
def main(
|
17 |
-
|
18 |
output: Optional[Path] = None,
|
19 |
to_stdout: Optional[bool] = False,
|
20 |
):
|
|
|
|
|
|
|
|
|
21 |
file_reader = FileReader()
|
|
|
22 |
if to_stdout or output is None:
|
23 |
writer = StdoutWriter()
|
24 |
else:
|
@@ -28,7 +42,7 @@ def main(
|
|
28 |
|
29 |
converter = JsonToJsonlConverter(file_reader, writer, json_parser, jsonl_serializer)
|
30 |
|
31 |
-
converter.convert(
|
32 |
|
33 |
|
34 |
if __name__ == "__main__":
|
|
|
1 |
+
"""Module to convert json file to jsonl"""
|
2 |
+
|
3 |
import os
|
4 |
import sys
|
5 |
from pathlib import Path
|
6 |
+
from typing import Optional, Union
|
7 |
|
8 |
import fire
|
9 |
+
|
10 |
+
from axolotl.convert import (
|
11 |
+
FileReader,
|
12 |
+
FileWriter,
|
13 |
+
JsonlSerializer,
|
14 |
+
JsonParser,
|
15 |
+
JsonToJsonlConverter,
|
16 |
+
StdoutWriter,
|
17 |
+
)
|
18 |
|
19 |
# add src to the pythonpath so we don't need to pip install this
|
20 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
21 |
src_dir = os.path.join(project_root, "src")
|
22 |
sys.path.insert(0, src_dir)
|
23 |
|
|
|
|
|
24 |
|
25 |
def main(
|
26 |
+
file: Path,
|
27 |
output: Optional[Path] = None,
|
28 |
to_stdout: Optional[bool] = False,
|
29 |
):
|
30 |
+
"""
|
31 |
+
Convert a json file to jsonl
|
32 |
+
"""
|
33 |
+
|
34 |
file_reader = FileReader()
|
35 |
+
writer: Union[StdoutWriter, FileWriter]
|
36 |
if to_stdout or output is None:
|
37 |
writer = StdoutWriter()
|
38 |
else:
|
|
|
42 |
|
43 |
converter = JsonToJsonlConverter(file_reader, writer, json_parser, jsonl_serializer)
|
44 |
|
45 |
+
converter.convert(file, output)
|
46 |
|
47 |
|
48 |
if __name__ == "__main__":
|
scripts/finetune.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import importlib
|
2 |
import logging
|
3 |
import os
|
@@ -5,25 +7,26 @@ import random
|
|
5 |
import signal
|
6 |
import sys
|
7 |
from pathlib import Path
|
8 |
-
from typing import
|
9 |
|
10 |
import fire
|
11 |
import torch
|
12 |
import yaml
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# add src to the pythonpath so we don't need to pip install this
|
15 |
from axolotl.utils.tokenization import check_dataset_labels
|
|
|
16 |
from axolotl.utils.validation import validate_config
|
17 |
-
from axolotl.utils.
|
18 |
|
19 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
20 |
src_dir = os.path.join(project_root, "src")
|
21 |
sys.path.insert(0, src_dir)
|
22 |
|
23 |
-
from axolotl.utils.data import load_prepare_datasets
|
24 |
-
from axolotl.utils.models import load_model, load_tokenizer
|
25 |
-
from axolotl.utils.trainer import setup_trainer
|
26 |
-
from axolotl.utils.wandb import setup_wandb_env_vars
|
27 |
|
28 |
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
|
29 |
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
@@ -31,14 +34,16 @@ DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
|
31 |
|
32 |
def choose_device(cfg):
|
33 |
def get_device():
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
cfg.device = get_device()
|
44 |
if cfg.device == "cuda":
|
@@ -51,7 +56,7 @@ def get_multi_line_input() -> Optional[str]:
|
|
51 |
print("Give me an instruction (Ctrl + D to finish): ")
|
52 |
instruction = ""
|
53 |
for line in sys.stdin:
|
54 |
-
instruction += line
|
55 |
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
|
56 |
return instruction
|
57 |
|
@@ -92,7 +97,7 @@ def do_inference(cfg, model, tokenizer, prompter="AlpacaPrompter"):
|
|
92 |
|
93 |
|
94 |
def choose_config(path: Path):
|
95 |
-
yaml_files =
|
96 |
|
97 |
if not yaml_files:
|
98 |
raise ValueError(
|
@@ -130,12 +135,12 @@ def train(
|
|
130 |
config = choose_config(config)
|
131 |
|
132 |
# load the config from the yaml file
|
133 |
-
with open(config, "
|
134 |
-
cfg: DictDefault = DictDefault(yaml.
|
135 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
136 |
# then overwrite the value
|
137 |
cfg_keys = cfg.keys()
|
138 |
-
for k in kwargs:
|
139 |
# if not strict, allow writing to cfg even if it's not in the yml already
|
140 |
if k in cfg_keys or cfg.strict is False:
|
141 |
# handle booleans
|
@@ -167,13 +172,11 @@ def train(
|
|
167 |
|
168 |
# load the tokenizer first
|
169 |
logging.info("loading tokenizer...")
|
170 |
-
tokenizer = load_tokenizer(
|
171 |
-
cfg.base_model_config,
|
172 |
-
cfg.tokenizer_type,
|
173 |
-
cfg
|
174 |
-
)
|
175 |
|
176 |
-
if check_not_in(
|
|
|
|
|
177 |
train_dataset, eval_dataset = load_prepare_datasets(
|
178 |
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
179 |
)
|
@@ -182,7 +185,7 @@ def train(
|
|
182 |
logging.info("check_dataset_labels...")
|
183 |
check_dataset_labels(
|
184 |
train_dataset.select(
|
185 |
-
[random.randrange(0, len(train_dataset) - 1) for
|
186 |
),
|
187 |
tokenizer,
|
188 |
)
|
@@ -239,7 +242,10 @@ def train(
|
|
239 |
if cfg.local_rank == 0:
|
240 |
signal.signal(
|
241 |
signal.SIGINT,
|
242 |
-
lambda signal, frame: (
|
|
|
|
|
|
|
243 |
)
|
244 |
|
245 |
logging.info("Starting trainer...")
|
@@ -252,7 +258,8 @@ def train(
|
|
252 |
]
|
253 |
if len(possible_checkpoints) > 0:
|
254 |
sorted_paths = sorted(
|
255 |
-
possible_checkpoints,
|
|
|
256 |
)
|
257 |
resume_from_checkpoint = sorted_paths[-1]
|
258 |
logging.info(
|
@@ -266,6 +273,7 @@ def train(
|
|
266 |
# only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file
|
267 |
if cfg.local_rank == 0:
|
268 |
model.save_pretrained(cfg.output_dir)
|
|
|
269 |
# trainer.save_model(cfg.output_dir) # TODO this may be needed for deepspeed to work? need to review another time
|
270 |
|
271 |
|
|
|
1 |
+
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
2 |
+
|
3 |
import importlib
|
4 |
import logging
|
5 |
import os
|
|
|
7 |
import signal
|
8 |
import sys
|
9 |
from pathlib import Path
|
10 |
+
from typing import Any, Dict, List, Optional, Union
|
11 |
|
12 |
import fire
|
13 |
import torch
|
14 |
import yaml
|
15 |
|
16 |
+
from axolotl.utils.data import load_prepare_datasets
|
17 |
+
from axolotl.utils.dict import DictDefault
|
18 |
+
from axolotl.utils.models import load_model, load_tokenizer
|
19 |
+
|
20 |
# add src to the pythonpath so we don't need to pip install this
|
21 |
from axolotl.utils.tokenization import check_dataset_labels
|
22 |
+
from axolotl.utils.trainer import setup_trainer
|
23 |
from axolotl.utils.validation import validate_config
|
24 |
+
from axolotl.utils.wandb import setup_wandb_env_vars
|
25 |
|
26 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
27 |
src_dir = os.path.join(project_root, "src")
|
28 |
sys.path.insert(0, src_dir)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
31 |
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
|
32 |
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
|
|
34 |
|
35 |
def choose_device(cfg):
|
36 |
def get_device():
|
37 |
+
try:
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
return f"cuda:{cfg.local_rank}"
|
40 |
+
|
41 |
+
if torch.backends.mps.is_available():
|
42 |
+
return "mps"
|
43 |
+
|
44 |
+
raise SystemError("No CUDA/mps device found")
|
45 |
+
except Exception: # pylint: disable=broad-exception-caught
|
46 |
+
return "cpu"
|
47 |
|
48 |
cfg.device = get_device()
|
49 |
if cfg.device == "cuda":
|
|
|
56 |
print("Give me an instruction (Ctrl + D to finish): ")
|
57 |
instruction = ""
|
58 |
for line in sys.stdin:
|
59 |
+
instruction += line # pylint: disable=consider-using-join
|
60 |
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
|
61 |
return instruction
|
62 |
|
|
|
97 |
|
98 |
|
99 |
def choose_config(path: Path):
|
100 |
+
yaml_files = list(path.glob("*.yml"))
|
101 |
|
102 |
if not yaml_files:
|
103 |
raise ValueError(
|
|
|
135 |
config = choose_config(config)
|
136 |
|
137 |
# load the config from the yaml file
|
138 |
+
with open(config, encoding="utf-8") as file:
|
139 |
+
cfg: DictDefault = DictDefault(yaml.safe_load(file))
|
140 |
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
141 |
# then overwrite the value
|
142 |
cfg_keys = cfg.keys()
|
143 |
+
for k, _ in kwargs.items():
|
144 |
# if not strict, allow writing to cfg even if it's not in the yml already
|
145 |
if k in cfg_keys or cfg.strict is False:
|
146 |
# handle booleans
|
|
|
172 |
|
173 |
# load the tokenizer first
|
174 |
logging.info("loading tokenizer...")
|
175 |
+
tokenizer = load_tokenizer(cfg.base_model_config, cfg.tokenizer_type, cfg)
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
if check_not_in(
|
178 |
+
["inference", "shard", "merge_lora"], kwargs
|
179 |
+
): # don't need to load dataset for these
|
180 |
train_dataset, eval_dataset = load_prepare_datasets(
|
181 |
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
182 |
)
|
|
|
185 |
logging.info("check_dataset_labels...")
|
186 |
check_dataset_labels(
|
187 |
train_dataset.select(
|
188 |
+
[random.randrange(0, len(train_dataset) - 1) for _ in range(5)] # nosec
|
189 |
),
|
190 |
tokenizer,
|
191 |
)
|
|
|
242 |
if cfg.local_rank == 0:
|
243 |
signal.signal(
|
244 |
signal.SIGINT,
|
245 |
+
lambda signal, frame: (
|
246 |
+
model.save_pretrained(cfg.output_dir),
|
247 |
+
sys.exit(0),
|
248 |
+
),
|
249 |
)
|
250 |
|
251 |
logging.info("Starting trainer...")
|
|
|
258 |
]
|
259 |
if len(possible_checkpoints) > 0:
|
260 |
sorted_paths = sorted(
|
261 |
+
possible_checkpoints,
|
262 |
+
key=lambda path: int(path.split("-")[-1]),
|
263 |
)
|
264 |
resume_from_checkpoint = sorted_paths[-1]
|
265 |
logging.info(
|
|
|
273 |
# only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file
|
274 |
if cfg.local_rank == 0:
|
275 |
model.save_pretrained(cfg.output_dir)
|
276 |
+
|
277 |
# trainer.save_model(cfg.output_dir) # TODO this may be needed for deepspeed to work? need to review another time
|
278 |
|
279 |
|
setup.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
install_requires = []
|
4 |
-
with open("./requirements.txt", "
|
5 |
# don't include peft yet until we check the int4
|
6 |
# need to manually install peft for now...
|
7 |
reqs = [r.strip() for r in requirements_file.readlines() if "peft" not in r]
|
|
|
1 |
+
"""setup.py for axolotl"""
|
2 |
+
|
3 |
+
from setuptools import find_packages, setup
|
4 |
|
5 |
install_requires = []
|
6 |
+
with open("./requirements.txt", encoding="utf-8") as requirements_file:
|
7 |
# don't include peft yet until we check the int4
|
8 |
# need to manually install peft for now...
|
9 |
reqs = [r.strip() for r in requirements_file.readlines() if "peft" not in r]
|
src/axolotl/convert.py
CHANGED
@@ -1,47 +1,76 @@
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import sys
|
3 |
|
4 |
|
5 |
class FileReader:
|
|
|
|
|
|
|
|
|
6 |
def read(self, file_path):
|
7 |
-
with open(file_path, "
|
8 |
return file.read()
|
9 |
|
10 |
|
11 |
class FileWriter:
|
|
|
|
|
|
|
|
|
12 |
def __init__(self, file_path):
|
13 |
self.file_path = file_path
|
14 |
|
15 |
def write(self, content):
|
16 |
-
with open(self.file_path, "w") as file:
|
17 |
file.write(content)
|
18 |
|
19 |
|
20 |
class StdoutWriter:
|
|
|
|
|
|
|
|
|
21 |
def write(self, content):
|
22 |
sys.stdout.write(content)
|
23 |
sys.stdout.write("\n")
|
24 |
|
25 |
|
26 |
class JsonParser:
|
|
|
|
|
|
|
|
|
27 |
def parse(self, content):
|
28 |
return json.loads(content)
|
29 |
|
30 |
|
31 |
class JsonlSerializer:
|
|
|
|
|
|
|
|
|
32 |
def serialize(self, data):
|
33 |
lines = [json.dumps(item) for item in data]
|
34 |
return "\n".join(lines)
|
35 |
|
36 |
|
37 |
class JsonToJsonlConverter:
|
|
|
|
|
|
|
|
|
38 |
def __init__(self, file_reader, file_writer, json_parser, jsonl_serializer):
|
39 |
self.file_reader = file_reader
|
40 |
self.file_writer = file_writer
|
41 |
self.json_parser = json_parser
|
42 |
self.jsonl_serializer = jsonl_serializer
|
43 |
|
44 |
-
def convert(
|
|
|
|
|
45 |
content = self.file_reader.read(input_file_path)
|
46 |
data = self.json_parser.parse(content)
|
47 |
# data = [r for r in data if r["conversations"]] # vicuna cleaned has rows with empty conversations
|
|
|
1 |
+
"""Module containing File Reader, File Writer, Json Parser, and Jsonl Serializer classes"""
|
2 |
+
|
3 |
+
|
4 |
import json
|
5 |
import sys
|
6 |
|
7 |
|
8 |
class FileReader:
|
9 |
+
"""
|
10 |
+
Reads a file and returns its contents as a string
|
11 |
+
"""
|
12 |
+
|
13 |
def read(self, file_path):
|
14 |
+
with open(file_path, encoding="utf-8") as file:
|
15 |
return file.read()
|
16 |
|
17 |
|
18 |
class FileWriter:
|
19 |
+
"""
|
20 |
+
Writes a string to a file
|
21 |
+
"""
|
22 |
+
|
23 |
def __init__(self, file_path):
|
24 |
self.file_path = file_path
|
25 |
|
26 |
def write(self, content):
|
27 |
+
with open(self.file_path, "w", encoding="utf-8") as file:
|
28 |
file.write(content)
|
29 |
|
30 |
|
31 |
class StdoutWriter:
|
32 |
+
"""
|
33 |
+
Writes a string to stdout
|
34 |
+
"""
|
35 |
+
|
36 |
def write(self, content):
|
37 |
sys.stdout.write(content)
|
38 |
sys.stdout.write("\n")
|
39 |
|
40 |
|
41 |
class JsonParser:
|
42 |
+
"""
|
43 |
+
Parses a string as JSON and returns the result
|
44 |
+
"""
|
45 |
+
|
46 |
def parse(self, content):
|
47 |
return json.loads(content)
|
48 |
|
49 |
|
50 |
class JsonlSerializer:
|
51 |
+
"""
|
52 |
+
Serializes a list of JSON objects into a JSONL string
|
53 |
+
"""
|
54 |
+
|
55 |
def serialize(self, data):
|
56 |
lines = [json.dumps(item) for item in data]
|
57 |
return "\n".join(lines)
|
58 |
|
59 |
|
60 |
class JsonToJsonlConverter:
|
61 |
+
"""
|
62 |
+
Converts a JSON file to JSONL
|
63 |
+
"""
|
64 |
+
|
65 |
def __init__(self, file_reader, file_writer, json_parser, jsonl_serializer):
|
66 |
self.file_reader = file_reader
|
67 |
self.file_writer = file_writer
|
68 |
self.json_parser = json_parser
|
69 |
self.jsonl_serializer = jsonl_serializer
|
70 |
|
71 |
+
def convert(
|
72 |
+
self, input_file_path, output_file_path
|
73 |
+
): # pylint: disable=unused-argument
|
74 |
content = self.file_reader.read(input_file_path)
|
75 |
data = self.json_parser.parse(content)
|
76 |
# data = [r for r in data if r["conversations"]] # vicuna cleaned has rows with empty conversations
|
src/axolotl/datasets.py
CHANGED
@@ -1,10 +1,12 @@
|
|
|
|
|
|
1 |
import logging
|
2 |
from typing import List
|
3 |
|
4 |
import torch
|
5 |
from datasets import IterableDataset
|
6 |
-
from .prompt_tokenizers import PromptTokenizingStrategy, InvalidDataException
|
7 |
|
|
|
8 |
|
9 |
# We want this to be a wrapper for an existing dataset that we have loaded
|
10 |
# lets use the concept of middlewares to wrap each dataset, for example
|
@@ -14,7 +16,14 @@ from .prompt_tokenizers import PromptTokenizingStrategy, InvalidDataException
|
|
14 |
|
15 |
|
16 |
class TokenizedPromptDataset(IterableDataset):
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
self,
|
19 |
prompt_tokenizer: PromptTokenizingStrategy,
|
20 |
dataset: IterableDataset,
|
@@ -42,7 +51,7 @@ class ConstantLengthDataset(IterableDataset):
|
|
42 |
seq_length (int): Length of token sequences to return.
|
43 |
"""
|
44 |
|
45 |
-
def __init__(
|
46 |
self,
|
47 |
tokenizer,
|
48 |
datasets,
|
@@ -82,10 +91,8 @@ class ConstantLengthDataset(IterableDataset):
|
|
82 |
else:
|
83 |
example_len = 0
|
84 |
|
85 |
-
if (
|
86 |
-
|
87 |
-
or buffer_len + int(add_concat_token) + example_len
|
88 |
-
> self.seq_length
|
89 |
):
|
90 |
if buffer["input_ids"]:
|
91 |
input_ids = torch.cat(buffer["input_ids"], dim=-1)[
|
@@ -95,9 +102,8 @@ class ConstantLengthDataset(IterableDataset):
|
|
95 |
: self.seq_length
|
96 |
]
|
97 |
labels = torch.cat(buffer["labels"], dim=-1)[: self.seq_length]
|
98 |
-
if (
|
99 |
-
|
100 |
-
and attention_mask.size() == input_ids.size()
|
101 |
):
|
102 |
yield {
|
103 |
"input_ids": input_ids,
|
@@ -108,7 +114,11 @@ class ConstantLengthDataset(IterableDataset):
|
|
108 |
logging.warning(
|
109 |
f"dropping batch due to tensor size mismatch input_ids: {input_ids.size()}, labels: {labels.size()}, attention_mask: {attention_mask.size()}"
|
110 |
)
|
111 |
-
buffer = {
|
|
|
|
|
|
|
|
|
112 |
buffer_len = 0
|
113 |
|
114 |
if example:
|
|
|
1 |
+
"""Module containing Dataset functionality"""
|
2 |
+
|
3 |
import logging
|
4 |
from typing import List
|
5 |
|
6 |
import torch
|
7 |
from datasets import IterableDataset
|
|
|
8 |
|
9 |
+
from .prompt_tokenizers import InvalidDataException, PromptTokenizingStrategy
|
10 |
|
11 |
# We want this to be a wrapper for an existing dataset that we have loaded
|
12 |
# lets use the concept of middlewares to wrap each dataset, for example
|
|
|
16 |
|
17 |
|
18 |
class TokenizedPromptDataset(IterableDataset):
|
19 |
+
"""
|
20 |
+
Iterable dataset that returns tokenized prompts from a stream of text files.
|
21 |
+
Args:
|
22 |
+
prompt_tokenizer (PromptTokenizingStrategy): The prompt tokenizing method for proccessing the data.
|
23 |
+
dataset (dataset.Dataset): Dataset with text files.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__( # pylint: disable=super-init-not-called
|
27 |
self,
|
28 |
prompt_tokenizer: PromptTokenizingStrategy,
|
29 |
dataset: IterableDataset,
|
|
|
51 |
seq_length (int): Length of token sequences to return.
|
52 |
"""
|
53 |
|
54 |
+
def __init__( # pylint: disable=super-init-not-called
|
55 |
self,
|
56 |
tokenizer,
|
57 |
datasets,
|
|
|
91 |
else:
|
92 |
example_len = 0
|
93 |
|
94 |
+
if not example_len or (
|
95 |
+
buffer_len + int(add_concat_token) + example_len > self.seq_length
|
|
|
|
|
96 |
):
|
97 |
if buffer["input_ids"]:
|
98 |
input_ids = torch.cat(buffer["input_ids"], dim=-1)[
|
|
|
102 |
: self.seq_length
|
103 |
]
|
104 |
labels = torch.cat(buffer["labels"], dim=-1)[: self.seq_length]
|
105 |
+
if labels.size() == input_ids.size() and (
|
106 |
+
attention_mask.size() == input_ids.size()
|
|
|
107 |
):
|
108 |
yield {
|
109 |
"input_ids": input_ids,
|
|
|
114 |
logging.warning(
|
115 |
f"dropping batch due to tensor size mismatch input_ids: {input_ids.size()}, labels: {labels.size()}, attention_mask: {attention_mask.size()}"
|
116 |
)
|
117 |
+
buffer = {
|
118 |
+
"input_ids": [],
|
119 |
+
"attention_mask": [],
|
120 |
+
"labels": [],
|
121 |
+
}
|
122 |
buffer_len = 0
|
123 |
|
124 |
if example:
|
src/axolotl/flash_attn.py
CHANGED
@@ -1,17 +1,15 @@
|
|
|
|
|
|
1 |
# copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
|
2 |
|
3 |
-
from typing import
|
4 |
|
5 |
import torch
|
6 |
-
from torch import nn
|
7 |
-
|
8 |
import transformers
|
9 |
-
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
10 |
-
|
11 |
from einops import rearrange
|
12 |
-
|
13 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
14 |
-
from
|
15 |
|
16 |
|
17 |
def forward(
|
@@ -74,7 +72,11 @@ def forward(
|
|
74 |
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
75 |
max_s = q_len
|
76 |
cu_q_lens = torch.arange(
|
77 |
-
0,
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
output = flash_attn_unpadded_qkvpacked_func(
|
80 |
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
@@ -82,35 +84,56 @@ def forward(
|
|
82 |
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
83 |
else:
|
84 |
nheads = qkv.shape[-2]
|
|
|
|
|
85 |
x = rearrange(qkv, "b s three h d -> b s (three h d)")
|
86 |
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
87 |
x_unpad = rearrange(
|
88 |
-
x_unpad,
|
|
|
|
|
|
|
89 |
)
|
90 |
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
91 |
-
x_unpad,
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
output = rearrange(
|
94 |
pad_input(
|
95 |
-
rearrange(output_unpad, "nnz h d -> nnz (h d)"),
|
|
|
|
|
|
|
96 |
),
|
97 |
"b s (h d) -> b s h d",
|
98 |
h=nheads,
|
99 |
)
|
100 |
-
return
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
104 |
# requires the attention mask to be the same as the key_padding_mask
|
105 |
def _prepare_decoder_attention_mask(
|
106 |
-
self,
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
# [bsz, seq_len]
|
109 |
return attention_mask
|
110 |
|
111 |
|
112 |
def replace_llama_attn_with_flash_attn():
|
113 |
-
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
114 |
_prepare_decoder_attention_mask
|
115 |
)
|
116 |
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
|
|
1 |
+
"""Flash attention monkey patch for llama model"""
|
2 |
+
|
3 |
# copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
|
4 |
|
5 |
+
from typing import Optional, Tuple
|
6 |
|
7 |
import torch
|
|
|
|
|
8 |
import transformers
|
|
|
|
|
9 |
from einops import rearrange
|
10 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
11 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
12 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
13 |
|
14 |
|
15 |
def forward(
|
|
|
72 |
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
73 |
max_s = q_len
|
74 |
cu_q_lens = torch.arange(
|
75 |
+
0,
|
76 |
+
(bsz + 1) * q_len,
|
77 |
+
step=q_len,
|
78 |
+
dtype=torch.int32,
|
79 |
+
device=qkv.device,
|
80 |
)
|
81 |
output = flash_attn_unpadded_qkvpacked_func(
|
82 |
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
|
|
84 |
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
|
85 |
else:
|
86 |
nheads = qkv.shape[-2]
|
87 |
+
|
88 |
+
# pylint: disable=invalid-name
|
89 |
x = rearrange(qkv, "b s three h d -> b s (three h d)")
|
90 |
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
91 |
x_unpad = rearrange(
|
92 |
+
x_unpad,
|
93 |
+
"nnz (three h d) -> nnz three h d",
|
94 |
+
three=3,
|
95 |
+
h=nheads,
|
96 |
)
|
97 |
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
98 |
+
x_unpad,
|
99 |
+
cu_q_lens,
|
100 |
+
max_s,
|
101 |
+
0.0,
|
102 |
+
softmax_scale=None,
|
103 |
+
causal=True,
|
104 |
)
|
105 |
output = rearrange(
|
106 |
pad_input(
|
107 |
+
rearrange(output_unpad, "nnz h d -> nnz (h d)"),
|
108 |
+
indices,
|
109 |
+
bsz,
|
110 |
+
q_len,
|
111 |
),
|
112 |
"b s (h d) -> b s h d",
|
113 |
h=nheads,
|
114 |
)
|
115 |
+
return (
|
116 |
+
self.o_proj(rearrange(output, "b s h d -> b s (h d)")),
|
117 |
+
None,
|
118 |
+
None,
|
119 |
+
)
|
120 |
|
121 |
|
122 |
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
123 |
# requires the attention mask to be the same as the key_padding_mask
|
124 |
def _prepare_decoder_attention_mask(
|
125 |
+
self,
|
126 |
+
attention_mask,
|
127 |
+
input_shape,
|
128 |
+
inputs_embeds,
|
129 |
+
past_key_values_length,
|
130 |
+
): # pylint: disable=unused-argument
|
131 |
# [bsz, seq_len]
|
132 |
return attention_mask
|
133 |
|
134 |
|
135 |
def replace_llama_attn_with_flash_attn():
|
136 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access
|
137 |
_prepare_decoder_attention_mask
|
138 |
)
|
139 |
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
src/axolotl/prompt_strategies/__init__.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import importlib
|
2 |
|
3 |
|
@@ -7,8 +9,8 @@ def load(strategy, tokenizer, cfg):
|
|
7 |
if strategy.split(".")[-1].startswith("load_"):
|
8 |
load_fn = strategy.split(".")[-1]
|
9 |
strategy = ".".join(strategy.split(".")[:-1])
|
10 |
-
|
11 |
-
|
12 |
-
return
|
13 |
-
except:
|
14 |
-
|
|
|
1 |
+
"""Module to load prompt strategies."""
|
2 |
+
|
3 |
import importlib
|
4 |
|
5 |
|
|
|
9 |
if strategy.split(".")[-1].startswith("load_"):
|
10 |
load_fn = strategy.split(".")[-1]
|
11 |
strategy = ".".join(strategy.split(".")[:-1])
|
12 |
+
mod = importlib.import_module(f".{strategy}", "axolotl.prompt_strategies")
|
13 |
+
func = getattr(mod, load_fn)
|
14 |
+
return func(tokenizer, cfg)
|
15 |
+
except Exception: # pylint: disable=broad-exception-caught
|
16 |
+
return None
|
src/axolotl/prompt_strategies/alpaca_chat.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from axolotl.prompt_tokenizers import (
|
2 |
AlpacaPromptTokenizingStrategy,
|
3 |
InstructionPromptTokenizingStrategy,
|
@@ -7,7 +11,7 @@ from axolotl.prompters import AlpacaPrompter, PromptStyle
|
|
7 |
|
8 |
def load(tokenizer, cfg):
|
9 |
return AlpacaPromptTokenizingStrategy(
|
10 |
-
AlpacaPrompter(PromptStyle.
|
11 |
tokenizer,
|
12 |
cfg.train_on_inputs,
|
13 |
cfg.sequence_len,
|
@@ -15,7 +19,11 @@ def load(tokenizer, cfg):
|
|
15 |
|
16 |
|
17 |
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
return (
|
20 |
prompt["question"],
|
21 |
"",
|
@@ -25,7 +33,7 @@ class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
25 |
|
26 |
def load_qa(tokenizer, cfg):
|
27 |
return AlpacaQAPromptTokenizingStrategy(
|
28 |
-
AlpacaPrompter(PromptStyle.
|
29 |
tokenizer,
|
30 |
cfg.train_on_inputs,
|
31 |
cfg.sequence_len,
|
|
|
1 |
+
"""Module containing the AlpacaQAPromptTokenizingStrategy class"""
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
from axolotl.prompt_tokenizers import (
|
6 |
AlpacaPromptTokenizingStrategy,
|
7 |
InstructionPromptTokenizingStrategy,
|
|
|
11 |
|
12 |
def load(tokenizer, cfg):
|
13 |
return AlpacaPromptTokenizingStrategy(
|
14 |
+
AlpacaPrompter(PromptStyle.CHAT.value),
|
15 |
tokenizer,
|
16 |
cfg.train_on_inputs,
|
17 |
cfg.sequence_len,
|
|
|
19 |
|
20 |
|
21 |
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
22 |
+
"""
|
23 |
+
Tokenizing strategy for AlpacaQA
|
24 |
+
"""
|
25 |
+
|
26 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
27 |
return (
|
28 |
prompt["question"],
|
29 |
"",
|
|
|
33 |
|
34 |
def load_qa(tokenizer, cfg):
|
35 |
return AlpacaQAPromptTokenizingStrategy(
|
36 |
+
AlpacaPrompter(PromptStyle.CHAT.value),
|
37 |
tokenizer,
|
38 |
cfg.train_on_inputs,
|
39 |
cfg.sequence_len,
|
src/axolotl/prompt_strategies/alpaca_instruct.py
CHANGED
@@ -1,10 +1,12 @@
|
|
|
|
|
|
1 |
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy
|
2 |
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
3 |
|
4 |
|
5 |
def load(tokenizer, cfg):
|
6 |
return AlpacaPromptTokenizingStrategy(
|
7 |
-
AlpacaPrompter(PromptStyle.
|
8 |
tokenizer,
|
9 |
cfg.train_on_inputs,
|
10 |
cfg.sequence_len,
|
|
|
1 |
+
"""Module loading the AlpacaInstructPromptTokenizingStrategy class"""
|
2 |
+
|
3 |
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy
|
4 |
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
5 |
|
6 |
|
7 |
def load(tokenizer, cfg):
|
8 |
return AlpacaPromptTokenizingStrategy(
|
9 |
+
AlpacaPrompter(PromptStyle.INSTRUCT.value),
|
10 |
tokenizer,
|
11 |
cfg.train_on_inputs,
|
12 |
cfg.sequence_len,
|
src/axolotl/prompt_strategies/creative_acr.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
import yaml
|
|
|
4 |
from axolotl.prompt_tokenizers import InstructionPromptTokenizingStrategy
|
5 |
|
6 |
|
7 |
class CreativeAnsweringPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
question = prompt["instruction"]
|
10 |
answer = prompt[
|
11 |
"revision"
|
@@ -18,6 +25,10 @@ class CreativeAnsweringPromptTokenizingStrategy(InstructionPromptTokenizingStrat
|
|
18 |
|
19 |
|
20 |
class CreativeCritiquePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
|
|
|
|
|
|
|
21 |
user_prompt = """Given the following Question and Response, critique the Response on a scale of 1-10. You should critique the answer in the following criteria:
|
22 |
refusal: whether the Response refuses to answer the Question. Responses containing language similar to "As an AI language model, I am not capable of ..." is a form of refusal and should have a low refusal score. 10 is no refusal, 0 is refuses to answer the question.
|
23 |
prescriptive bias: whether the Response attempts to prescribe or dictate certain actions or behaviors of the user. 10 no prescriptive bias present, 0 means there is prescriptive bias.
|
@@ -49,12 +60,16 @@ Question: {question}
|
|
49 |
Answer: {answer}
|
50 |
"""
|
51 |
|
52 |
-
def parse_instruction_fields(self, prompt) ->
|
53 |
scores = yaml.dump(
|
54 |
-
prompt["scores"],
|
|
|
|
|
55 |
)
|
56 |
critiques = yaml.dump(
|
57 |
-
prompt["critiques"],
|
|
|
|
|
58 |
)
|
59 |
evaluation = scores + critiques
|
60 |
question = prompt["instruction"]
|
@@ -67,6 +82,10 @@ Answer: {answer}
|
|
67 |
|
68 |
|
69 |
class CreativeRevisePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
|
|
|
|
|
|
|
70 |
user_prompt = """Definitions:
|
71 |
refusal: whether the Response refuses to answer the Question. Responses containing language similar to "As an AI language model, I am not capable of ..." is a form of refusal and should have a low refusal score. 10 is no refusal, 0 is refuses to answer the question.
|
72 |
prescriptive bias: whether the Response attempts to prescribe or dictate certain actions or behaviors of the user. 10 no prescriptive bias present, 0 means their is prescriptive bias.
|
@@ -81,12 +100,16 @@ Evaluation:
|
|
81 |
{evaluation}
|
82 |
"""
|
83 |
|
84 |
-
def parse_instruction_fields(self, prompt) ->
|
85 |
scores = yaml.dump(
|
86 |
-
prompt["scores"],
|
|
|
|
|
87 |
)
|
88 |
critiques = yaml.dump(
|
89 |
-
prompt["critiques"],
|
|
|
|
|
90 |
)
|
91 |
evaluation = scores + critiques
|
92 |
question = prompt["instruction"]
|
@@ -101,13 +124,19 @@ Evaluation:
|
|
101 |
|
102 |
|
103 |
class CreativePrompterBase:
|
|
|
|
|
|
|
|
|
104 |
system_prompt = ""
|
105 |
prompt_input = "{system_prompt}\nUSER: {instruction}\nASSISTANT:"
|
106 |
|
107 |
def build_prompt(
|
108 |
self,
|
109 |
instruction: str,
|
110 |
-
input: Union[
|
|
|
|
|
111 |
output: Union[None, str] = None,
|
112 |
) -> Generator[str, None, None]:
|
113 |
if self.system_prompt:
|
@@ -120,30 +149,51 @@ class CreativePrompterBase:
|
|
120 |
|
121 |
|
122 |
class CreativeAnswerPrompter(CreativePrompterBase):
|
|
|
|
|
|
|
|
|
123 |
system_prompt = "Answer the following question in a comprehensive, in-depth, and creative way. Additionally your response should be relevant, accurate, and free of any ambiguity."
|
124 |
|
125 |
|
126 |
class CreativeCritiquePrompter(CreativePrompterBase):
|
|
|
|
|
|
|
|
|
127 |
system_prompt = ""
|
128 |
|
129 |
|
130 |
class CreativeRevisePrompter(CreativePrompterBase):
|
|
|
|
|
|
|
|
|
131 |
system_prompt = ""
|
132 |
|
133 |
|
134 |
def load_answer(tokenizer, cfg):
|
135 |
return CreativeAnsweringPromptTokenizingStrategy(
|
136 |
-
CreativeAnswerPrompter(),
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
|
140 |
def load_critique(tokenizer, cfg):
|
141 |
return CreativeCritiquePromptTokenizingStrategy(
|
142 |
-
CreativeCritiquePrompter(),
|
|
|
|
|
|
|
143 |
)
|
144 |
|
145 |
|
146 |
def load_revise(tokenizer, cfg):
|
147 |
return CreativeRevisePromptTokenizingStrategy(
|
148 |
-
CreativeRevisePrompter(),
|
|
|
|
|
|
|
149 |
)
|
|
|
1 |
+
"""Module loading the CreativePromptTokenizingStrategy and similar classes"""
|
2 |
+
|
3 |
+
from typing import Generator, Tuple, Union
|
4 |
|
5 |
import yaml
|
6 |
+
|
7 |
from axolotl.prompt_tokenizers import InstructionPromptTokenizingStrategy
|
8 |
|
9 |
|
10 |
class CreativeAnsweringPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
11 |
+
"""
|
12 |
+
Tokenizing strategy for Creative Answering
|
13 |
+
"""
|
14 |
+
|
15 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
16 |
question = prompt["instruction"]
|
17 |
answer = prompt[
|
18 |
"revision"
|
|
|
25 |
|
26 |
|
27 |
class CreativeCritiquePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
28 |
+
"""
|
29 |
+
Tokenizing strategy for Creative Critique
|
30 |
+
"""
|
31 |
+
|
32 |
user_prompt = """Given the following Question and Response, critique the Response on a scale of 1-10. You should critique the answer in the following criteria:
|
33 |
refusal: whether the Response refuses to answer the Question. Responses containing language similar to "As an AI language model, I am not capable of ..." is a form of refusal and should have a low refusal score. 10 is no refusal, 0 is refuses to answer the question.
|
34 |
prescriptive bias: whether the Response attempts to prescribe or dictate certain actions or behaviors of the user. 10 no prescriptive bias present, 0 means there is prescriptive bias.
|
|
|
60 |
Answer: {answer}
|
61 |
"""
|
62 |
|
63 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
64 |
scores = yaml.dump(
|
65 |
+
prompt["scores"],
|
66 |
+
default_flow_style=False,
|
67 |
+
Dumper=yaml.Dumper,
|
68 |
)
|
69 |
critiques = yaml.dump(
|
70 |
+
prompt["critiques"],
|
71 |
+
default_flow_style=False,
|
72 |
+
Dumper=yaml.Dumper,
|
73 |
)
|
74 |
evaluation = scores + critiques
|
75 |
question = prompt["instruction"]
|
|
|
82 |
|
83 |
|
84 |
class CreativeRevisePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
85 |
+
"""
|
86 |
+
Tokenizing strategy for Creative Revise
|
87 |
+
"""
|
88 |
+
|
89 |
user_prompt = """Definitions:
|
90 |
refusal: whether the Response refuses to answer the Question. Responses containing language similar to "As an AI language model, I am not capable of ..." is a form of refusal and should have a low refusal score. 10 is no refusal, 0 is refuses to answer the question.
|
91 |
prescriptive bias: whether the Response attempts to prescribe or dictate certain actions or behaviors of the user. 10 no prescriptive bias present, 0 means their is prescriptive bias.
|
|
|
100 |
{evaluation}
|
101 |
"""
|
102 |
|
103 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
104 |
scores = yaml.dump(
|
105 |
+
prompt["scores"],
|
106 |
+
default_flow_style=False,
|
107 |
+
Dumper=yaml.Dumper,
|
108 |
)
|
109 |
critiques = yaml.dump(
|
110 |
+
prompt["critiques"],
|
111 |
+
default_flow_style=False,
|
112 |
+
Dumper=yaml.Dumper,
|
113 |
)
|
114 |
evaluation = scores + critiques
|
115 |
question = prompt["instruction"]
|
|
|
124 |
|
125 |
|
126 |
class CreativePrompterBase:
|
127 |
+
"""
|
128 |
+
Base class for Creative Prompters
|
129 |
+
"""
|
130 |
+
|
131 |
system_prompt = ""
|
132 |
prompt_input = "{system_prompt}\nUSER: {instruction}\nASSISTANT:"
|
133 |
|
134 |
def build_prompt(
|
135 |
self,
|
136 |
instruction: str,
|
137 |
+
input: Union[ # pylint: disable=redefined-builtin, unused-argument
|
138 |
+
None, str
|
139 |
+
] = None,
|
140 |
output: Union[None, str] = None,
|
141 |
) -> Generator[str, None, None]:
|
142 |
if self.system_prompt:
|
|
|
149 |
|
150 |
|
151 |
class CreativeAnswerPrompter(CreativePrompterBase):
|
152 |
+
"""
|
153 |
+
Prompter for Creative Answering
|
154 |
+
"""
|
155 |
+
|
156 |
system_prompt = "Answer the following question in a comprehensive, in-depth, and creative way. Additionally your response should be relevant, accurate, and free of any ambiguity."
|
157 |
|
158 |
|
159 |
class CreativeCritiquePrompter(CreativePrompterBase):
|
160 |
+
"""
|
161 |
+
Prompter for Creative Critique
|
162 |
+
"""
|
163 |
+
|
164 |
system_prompt = ""
|
165 |
|
166 |
|
167 |
class CreativeRevisePrompter(CreativePrompterBase):
|
168 |
+
"""
|
169 |
+
Prompter for Creative Revise
|
170 |
+
"""
|
171 |
+
|
172 |
system_prompt = ""
|
173 |
|
174 |
|
175 |
def load_answer(tokenizer, cfg):
|
176 |
return CreativeAnsweringPromptTokenizingStrategy(
|
177 |
+
CreativeAnswerPrompter(),
|
178 |
+
tokenizer,
|
179 |
+
cfg.train_on_inputs,
|
180 |
+
cfg.sequence_len,
|
181 |
)
|
182 |
|
183 |
|
184 |
def load_critique(tokenizer, cfg):
|
185 |
return CreativeCritiquePromptTokenizingStrategy(
|
186 |
+
CreativeCritiquePrompter(),
|
187 |
+
tokenizer,
|
188 |
+
cfg.train_on_inputs,
|
189 |
+
cfg.sequence_len,
|
190 |
)
|
191 |
|
192 |
|
193 |
def load_revise(tokenizer, cfg):
|
194 |
return CreativeRevisePromptTokenizingStrategy(
|
195 |
+
CreativeRevisePrompter(),
|
196 |
+
tokenizer,
|
197 |
+
cfg.train_on_inputs,
|
198 |
+
cfg.sequence_len,
|
199 |
)
|
src/axolotl/prompt_strategies/pygmalion.py
CHANGED
@@ -1,29 +1,34 @@
|
|
|
|
|
|
1 |
import copy
|
2 |
import logging
|
3 |
from collections import defaultdict
|
4 |
-
from typing import Generator
|
5 |
|
6 |
-
from axolotl.prompt_tokenizers import
|
|
|
|
|
|
|
|
|
7 |
|
8 |
IGNORE_TOKEN_ID = -100
|
9 |
|
10 |
|
11 |
class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def __init__(self, prompter, tokenizer, *args, **kwargs):
|
15 |
-
super().__init__(prompter, tokenizer)
|
16 |
res = self._tokenize("<|model|>", add_eos_token=False, strip_bos_token=True)
|
17 |
self.bot_prefix_token_ids = res["input_ids"]
|
18 |
|
19 |
def tokenize_prompt(self, prompt):
|
20 |
-
result =
|
21 |
-
|
22 |
-
"attention_mask": [],
|
23 |
-
"labels": [],
|
24 |
-
}
|
25 |
-
current_len = 0
|
26 |
-
for i, part in enumerate(self.prompter.build_prompt(prompt["conversations"])):
|
27 |
role, message = part
|
28 |
if role == "system":
|
29 |
prefix = "<|system|>"
|
@@ -61,45 +66,29 @@ class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
61 |
else:
|
62 |
logging.warning(f"unknown role in conversation: {role}")
|
63 |
res = defaultdict(lambda: [])
|
64 |
-
input_ids = res["input_ids"]
|
65 |
-
input_len = len(input_ids)
|
66 |
-
result["input_ids"][current_len : current_len + input_len] = input_ids
|
67 |
-
result["attention_mask"][current_len : current_len + input_len] = [
|
68 |
-
1 if x != self.tokenizer.pad_token_id else 0 for x in input_ids
|
69 |
-
]
|
70 |
-
result["labels"][current_len : current_len + input_len] = labels
|
71 |
-
current_len += input_len
|
72 |
-
return result
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
if (
|
83 |
-
result["input_ids"][-1] != self.tokenizer.eos_token_id
|
84 |
-
and len(result["input_ids"]) < self.sequence_len
|
85 |
-
and add_eos_token
|
86 |
-
):
|
87 |
-
result["input_ids"].append(self.tokenizer.eos_token_id)
|
88 |
-
result["attention_mask"].append(1)
|
89 |
-
|
90 |
-
if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
|
91 |
-
result["input_ids"] = result["input_ids"][1:]
|
92 |
-
result["attention_mask"] = result["attention_mask"][1:]
|
93 |
-
|
94 |
-
result["labels"] = result["input_ids"].copy()
|
95 |
return result
|
96 |
|
97 |
|
98 |
class PygmalionPrompter:
|
|
|
|
|
|
|
|
|
99 |
def __init__(self, *args, **kwargs):
|
100 |
pass
|
101 |
|
102 |
-
def build_prompt(
|
|
|
|
|
103 |
for msg in source:
|
104 |
yield msg["role"], msg["value"]
|
105 |
|
|
|
1 |
+
"""Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class"""
|
2 |
+
|
3 |
import copy
|
4 |
import logging
|
5 |
from collections import defaultdict
|
6 |
+
from typing import Generator, List, Tuple
|
7 |
|
8 |
+
from axolotl.prompt_tokenizers import (
|
9 |
+
PromptTokenizingStrategy,
|
10 |
+
parse_tokenized_to_result,
|
11 |
+
tokenize_prompt_default,
|
12 |
+
)
|
13 |
|
14 |
IGNORE_TOKEN_ID = -100
|
15 |
|
16 |
|
17 |
class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
18 |
+
"""
|
19 |
+
Tokenizing strategy for Pygmalion.
|
20 |
+
"""
|
21 |
+
|
22 |
+
bot_prefix_token_ids: List[int] = []
|
23 |
|
24 |
def __init__(self, prompter, tokenizer, *args, **kwargs):
|
25 |
+
super().__init__(prompter, tokenizer, *args, **kwargs)
|
26 |
res = self._tokenize("<|model|>", add_eos_token=False, strip_bos_token=True)
|
27 |
self.bot_prefix_token_ids = res["input_ids"]
|
28 |
|
29 |
def tokenize_prompt(self, prompt):
|
30 |
+
result, current_len = tokenize_prompt_default()
|
31 |
+
for _, part in enumerate(self.prompter.build_prompt(prompt["conversations"])):
|
|
|
|
|
|
|
|
|
|
|
32 |
role, message = part
|
33 |
if role == "system":
|
34 |
prefix = "<|system|>"
|
|
|
66 |
else:
|
67 |
logging.warning(f"unknown role in conversation: {role}")
|
68 |
res = defaultdict(lambda: [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# pylint: disable=duplicate-code
|
71 |
+
result, current_len = parse_tokenized_to_result(
|
72 |
+
result,
|
73 |
+
current_len,
|
74 |
+
res,
|
75 |
+
labels,
|
76 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return result
|
79 |
|
80 |
|
81 |
class PygmalionPrompter:
|
82 |
+
"""
|
83 |
+
Prompter for Pygmalion.
|
84 |
+
"""
|
85 |
+
|
86 |
def __init__(self, *args, **kwargs):
|
87 |
pass
|
88 |
|
89 |
+
def build_prompt(
|
90 |
+
self, source, *args, **kwargs # pylint: disable=unused-argument
|
91 |
+
) -> Generator[Tuple[str, str], None, None]:
|
92 |
for msg in source:
|
93 |
yield msg["role"], msg["value"]
|
94 |
|
src/axolotl/prompt_tokenizers.py
CHANGED
@@ -1,24 +1,33 @@
|
|
|
|
|
|
1 |
import abc
|
2 |
import copy
|
3 |
import functools
|
4 |
import logging
|
|
|
5 |
|
6 |
from transformers import PreTrainedTokenizer
|
7 |
|
8 |
from axolotl.prompters import IGNORE_TOKEN_ID
|
9 |
|
10 |
IGNORE_INDEX = -100
|
11 |
-
LLAMA_DEFAULT_PAD_TOKEN = "[PAD]"
|
12 |
-
LLAMA_DEFAULT_EOS_TOKEN = "</s>"
|
13 |
-
LLAMA_DEFAULT_BOS_TOKEN = "<s>"
|
14 |
-
LLAMA_DEFAULT_UNK_TOKEN = "<unk>"
|
15 |
|
16 |
|
17 |
class InvalidDataException(Exception):
|
18 |
-
|
|
|
|
|
19 |
|
20 |
|
21 |
class PromptTokenizingStrategy(abc.ABC):
|
|
|
|
|
|
|
|
|
22 |
def __init__(
|
23 |
self,
|
24 |
prompter,
|
@@ -35,27 +44,58 @@ class PromptTokenizingStrategy(abc.ABC):
|
|
35 |
def tokenize_prompt(self, prompt):
|
36 |
pass
|
37 |
|
38 |
-
@functools.
|
39 |
def _get_user_token(self):
|
40 |
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>")
|
41 |
if isinstance(id_or_ids, (int,)):
|
42 |
return id_or_ids
|
43 |
return False
|
44 |
|
45 |
-
@functools.
|
46 |
def _get_assistant_token(self):
|
47 |
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>")
|
48 |
if isinstance(id_or_ids, (int,)):
|
49 |
return id_or_ids
|
50 |
return False
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
raise NotImplementedError
|
56 |
|
57 |
def tokenize_prompt(self, prompt):
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
full_prompt = self._build_full_prompt(instruction, input, response)
|
60 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
61 |
if not self.train_on_inputs:
|
@@ -76,7 +116,9 @@ class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
76 |
|
77 |
return tokenized_full_prompt
|
78 |
|
79 |
-
def _build_full_prompt(
|
|
|
|
|
80 |
return next(
|
81 |
iter(
|
82 |
self.prompter.build_prompt(
|
@@ -87,32 +129,13 @@ class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
87 |
)
|
88 |
)
|
89 |
|
90 |
-
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
|
91 |
-
result = self.tokenizer(
|
92 |
-
prompt,
|
93 |
-
truncation=True,
|
94 |
-
max_length=self.sequence_len,
|
95 |
-
padding=False,
|
96 |
-
return_tensors=None,
|
97 |
-
)
|
98 |
-
if (
|
99 |
-
result["input_ids"][-1] != self.tokenizer.eos_token_id
|
100 |
-
and len(result["input_ids"]) < self.sequence_len
|
101 |
-
and add_eos_token
|
102 |
-
):
|
103 |
-
result["input_ids"].append(self.tokenizer.eos_token_id)
|
104 |
-
result["attention_mask"].append(1)
|
105 |
-
|
106 |
-
if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
|
107 |
-
result["input_ids"] = result["input_ids"][1:]
|
108 |
-
result["attention_mask"] = result["attention_mask"][1:]
|
109 |
-
|
110 |
-
result["labels"] = result["input_ids"].copy()
|
111 |
-
return result
|
112 |
-
|
113 |
|
114 |
class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
return (
|
117 |
prompt["instruction"],
|
118 |
prompt["input"] if "input" in prompt else "",
|
@@ -121,7 +144,11 @@ class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
121 |
|
122 |
|
123 |
class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
return (
|
126 |
prompt["question"],
|
127 |
"\n".join(f'- "{choice}"' for choice in prompt["choices"]),
|
@@ -130,7 +157,11 @@ class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingSt
|
|
130 |
|
131 |
|
132 |
class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
return (
|
135 |
prompt["question"],
|
136 |
prompt["category"],
|
@@ -139,7 +170,11 @@ class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
139 |
|
140 |
|
141 |
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
return (
|
144 |
prompt["INSTRUCTION"],
|
145 |
"",
|
@@ -148,7 +183,11 @@ class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy)
|
|
148 |
|
149 |
|
150 |
class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
return (
|
153 |
prompt["article"],
|
154 |
"",
|
@@ -157,7 +196,11 @@ class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy)
|
|
157 |
|
158 |
|
159 |
class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
return (
|
162 |
prompt["instruction"],
|
163 |
prompt["input"] if "input" in prompt else "",
|
@@ -166,7 +209,11 @@ class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
166 |
|
167 |
|
168 |
class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
169 |
-
|
|
|
|
|
|
|
|
|
170 |
return (
|
171 |
prompt["prompt"],
|
172 |
"",
|
@@ -175,28 +222,34 @@ class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
|
175 |
|
176 |
|
177 |
class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
178 |
-
|
179 |
-
|
|
|
180 |
|
181 |
def tokenize_prompt(self, prompt):
|
182 |
-
|
183 |
-
full_prompt = self._build_full_prompt(instruction, None, None)
|
184 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
185 |
|
186 |
return tokenized_full_prompt
|
187 |
|
188 |
-
def _build_full_prompt(
|
189 |
-
|
|
|
|
|
190 |
|
191 |
|
192 |
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
193 |
-
|
|
|
|
|
|
|
|
|
194 |
raise NotImplementedError
|
195 |
|
196 |
def tokenize_prompt(self, prompt):
|
197 |
(
|
198 |
instruction,
|
199 |
-
input,
|
200 |
output,
|
201 |
reflection,
|
202 |
corrected,
|
@@ -223,7 +276,9 @@ class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
223 |
|
224 |
return tokenized_full_prompt
|
225 |
|
226 |
-
def _build_full_prompt(
|
|
|
|
|
227 |
return next(
|
228 |
iter(
|
229 |
self.prompter.build_prompt(
|
@@ -236,7 +291,7 @@ class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
236 |
)
|
237 |
)
|
238 |
|
239 |
-
def _tokenize(self, prompt, add_eos_token=True):
|
240 |
result = self.tokenizer(
|
241 |
prompt,
|
242 |
truncation=True,
|
@@ -257,7 +312,11 @@ class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
257 |
|
258 |
|
259 |
class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
return (
|
262 |
prompt["instruction"],
|
263 |
prompt["input"] if "input" in prompt else "",
|
@@ -268,20 +327,19 @@ class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
|
|
268 |
|
269 |
|
270 |
class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
|
|
|
|
|
|
|
271 |
def get_conversation_thread(self, prompt):
|
272 |
return prompt["conversations"]
|
273 |
|
274 |
def tokenize_prompt(self, prompt):
|
275 |
-
result =
|
276 |
-
"input_ids": [],
|
277 |
-
"attention_mask": [],
|
278 |
-
"labels": [],
|
279 |
-
}
|
280 |
-
current_len = 0
|
281 |
user_token = self._get_user_token()
|
282 |
assistant_token = self._get_assistant_token()
|
283 |
try:
|
284 |
-
for
|
285 |
self.prompter.build_prompt(self.get_conversation_thread(prompt))
|
286 |
):
|
287 |
if isinstance(part, tuple):
|
@@ -289,7 +347,9 @@ class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
289 |
part = part[0] + part[1] if not user_token else part[1]
|
290 |
# this is still the user query, we should
|
291 |
res = self._tokenize(
|
292 |
-
part.strip(),
|
|
|
|
|
293 |
)
|
294 |
if user_token:
|
295 |
res["input_ids"] = [user_token, *res["input_ids"]]
|
@@ -300,32 +360,39 @@ class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
300 |
part = part[0] + part[1] if not assistant_token else part[1]
|
301 |
# this should be the assistent response, should end with an eos token
|
302 |
res = self._tokenize(
|
303 |
-
part.strip(),
|
|
|
|
|
304 |
)
|
305 |
if assistant_token:
|
306 |
-
res["input_ids"] = [
|
|
|
|
|
|
|
307 |
# not masked out from labels
|
308 |
labels = copy.deepcopy(res["input_ids"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
else:
|
310 |
-
logging.warning("unhandled role:
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
labels
|
318 |
-
|
319 |
-
|
320 |
-
result["input_ids"][current_len : current_len + input_len] = input_ids
|
321 |
-
result["attention_mask"][current_len : current_len + input_len] = [
|
322 |
-
1 if x != self.tokenizer.pad_token_id else 0 for x in input_ids
|
323 |
-
]
|
324 |
-
result["labels"][current_len : current_len + input_len] = labels
|
325 |
-
current_len += input_len
|
326 |
return result
|
327 |
-
except (KeyError, AssertionError, IndexError) as
|
328 |
-
raise InvalidDataException(str(
|
329 |
|
330 |
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
|
331 |
result = self.tokenizer(
|
@@ -349,3 +416,40 @@ class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
|
|
349 |
|
350 |
result["labels"] = result["input_ids"].copy()
|
351 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing PromptTokenizingStrategy and Prompter classes"""
|
2 |
+
|
3 |
import abc
|
4 |
import copy
|
5 |
import functools
|
6 |
import logging
|
7 |
+
from typing import Dict, List, Tuple, Union
|
8 |
|
9 |
from transformers import PreTrainedTokenizer
|
10 |
|
11 |
from axolotl.prompters import IGNORE_TOKEN_ID
|
12 |
|
13 |
IGNORE_INDEX = -100
|
14 |
+
LLAMA_DEFAULT_PAD_TOKEN = "[PAD]" # nosec
|
15 |
+
LLAMA_DEFAULT_EOS_TOKEN = "</s>" # nosec
|
16 |
+
LLAMA_DEFAULT_BOS_TOKEN = "<s>" # nosec
|
17 |
+
LLAMA_DEFAULT_UNK_TOKEN = "<unk>" # nosec
|
18 |
|
19 |
|
20 |
class InvalidDataException(Exception):
|
21 |
+
"""
|
22 |
+
Exception raised when the data is invalid
|
23 |
+
"""
|
24 |
|
25 |
|
26 |
class PromptTokenizingStrategy(abc.ABC):
|
27 |
+
"""
|
28 |
+
Abstract class for tokenizing strategies
|
29 |
+
"""
|
30 |
+
|
31 |
def __init__(
|
32 |
self,
|
33 |
prompter,
|
|
|
44 |
def tokenize_prompt(self, prompt):
|
45 |
pass
|
46 |
|
47 |
+
@functools.lru_cache(maxsize=128)
|
48 |
def _get_user_token(self):
|
49 |
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>")
|
50 |
if isinstance(id_or_ids, (int,)):
|
51 |
return id_or_ids
|
52 |
return False
|
53 |
|
54 |
+
@functools.lru_cache(maxsize=128)
|
55 |
def _get_assistant_token(self):
|
56 |
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>")
|
57 |
if isinstance(id_or_ids, (int,)):
|
58 |
return id_or_ids
|
59 |
return False
|
60 |
|
61 |
+
def _tokenize(self, prompt: str, add_eos_token=True, strip_bos_token=False):
|
62 |
+
result = self.tokenizer(
|
63 |
+
prompt,
|
64 |
+
truncation=True,
|
65 |
+
max_length=self.sequence_len,
|
66 |
+
padding=False,
|
67 |
+
return_tensors=None,
|
68 |
+
)
|
69 |
+
if (
|
70 |
+
result["input_ids"][-1] != self.tokenizer.eos_token_id
|
71 |
+
and len(result["input_ids"]) < self.sequence_len
|
72 |
+
and add_eos_token
|
73 |
+
):
|
74 |
+
result["input_ids"].append(self.tokenizer.eos_token_id)
|
75 |
+
result["attention_mask"].append(1)
|
76 |
+
|
77 |
+
if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
|
78 |
+
result["input_ids"] = result["input_ids"][1:]
|
79 |
+
result["attention_mask"] = result["attention_mask"][1:]
|
80 |
+
|
81 |
+
result["labels"] = result["input_ids"].copy()
|
82 |
+
return result
|
83 |
+
|
84 |
|
85 |
class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
86 |
+
"""
|
87 |
+
Tokenizing strategy for instruction-based prompts.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
91 |
raise NotImplementedError
|
92 |
|
93 |
def tokenize_prompt(self, prompt):
|
94 |
+
(
|
95 |
+
instruction,
|
96 |
+
input, # pylint: disable=redefined-builtin
|
97 |
+
response,
|
98 |
+
) = self.parse_instruction_fields(prompt)
|
99 |
full_prompt = self._build_full_prompt(instruction, input, response)
|
100 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
101 |
if not self.train_on_inputs:
|
|
|
116 |
|
117 |
return tokenized_full_prompt
|
118 |
|
119 |
+
def _build_full_prompt(
|
120 |
+
self, instruction, input, response # pylint: disable=redefined-builtin
|
121 |
+
):
|
122 |
return next(
|
123 |
iter(
|
124 |
self.prompter.build_prompt(
|
|
|
129 |
)
|
130 |
)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
134 |
+
"""
|
135 |
+
Tokenizing strategy for Alpaca prompts.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
139 |
return (
|
140 |
prompt["instruction"],
|
141 |
prompt["input"] if "input" in prompt else "",
|
|
|
144 |
|
145 |
|
146 |
class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
147 |
+
"""
|
148 |
+
Tokenizing strategy for Alpaca Multiple Choice prompts.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
152 |
return (
|
153 |
prompt["question"],
|
154 |
"\n".join(f'- "{choice}"' for choice in prompt["choices"]),
|
|
|
157 |
|
158 |
|
159 |
class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
160 |
+
"""
|
161 |
+
Tokenizing strategy for Jeopardy prompts.
|
162 |
+
"""
|
163 |
+
|
164 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
165 |
return (
|
166 |
prompt["question"],
|
167 |
prompt["category"],
|
|
|
170 |
|
171 |
|
172 |
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
173 |
+
"""
|
174 |
+
Tokenizing strategy for OpenAssistant prompts.
|
175 |
+
"""
|
176 |
+
|
177 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
178 |
return (
|
179 |
prompt["INSTRUCTION"],
|
180 |
"",
|
|
|
183 |
|
184 |
|
185 |
class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
186 |
+
"""
|
187 |
+
Tokenizing strategy for SummarizeTLDR prompts.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
191 |
return (
|
192 |
prompt["article"],
|
193 |
"",
|
|
|
196 |
|
197 |
|
198 |
class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
199 |
+
"""
|
200 |
+
Tokenizing strategy for GPTeacher prompts.
|
201 |
+
"""
|
202 |
+
|
203 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
204 |
return (
|
205 |
prompt["instruction"],
|
206 |
prompt["input"] if "input" in prompt else "",
|
|
|
209 |
|
210 |
|
211 |
class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
212 |
+
"""
|
213 |
+
Tokenizing strategy for NomicGPT4All prompts.
|
214 |
+
"""
|
215 |
+
|
216 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
217 |
return (
|
218 |
prompt["prompt"],
|
219 |
"",
|
|
|
222 |
|
223 |
|
224 |
class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
225 |
+
"""
|
226 |
+
Tokenizing strategy for Completion prompts.
|
227 |
+
"""
|
228 |
|
229 |
def tokenize_prompt(self, prompt):
|
230 |
+
full_prompt = self._build_full_prompt(prompt["text"], None, None)
|
|
|
231 |
tokenized_full_prompt = self._tokenize(full_prompt)
|
232 |
|
233 |
return tokenized_full_prompt
|
234 |
|
235 |
+
def _build_full_prompt(
|
236 |
+
self, instruction, input, response
|
237 |
+
): # pylint: disable=redefined-builtin
|
238 |
+
return next(iter(self.prompter.build_prompt(instruction, input, response)))
|
239 |
|
240 |
|
241 |
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
242 |
+
"""
|
243 |
+
Tokenizing strategy for Reflection prompts.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
|
247 |
raise NotImplementedError
|
248 |
|
249 |
def tokenize_prompt(self, prompt):
|
250 |
(
|
251 |
instruction,
|
252 |
+
input, # pylint: disable=redefined-builtin
|
253 |
output,
|
254 |
reflection,
|
255 |
corrected,
|
|
|
276 |
|
277 |
return tokenized_full_prompt
|
278 |
|
279 |
+
def _build_full_prompt(
|
280 |
+
self, instruction, input, output, reflection, corrected
|
281 |
+
): # pylint: disable=redefined-builtin
|
282 |
return next(
|
283 |
iter(
|
284 |
self.prompter.build_prompt(
|
|
|
291 |
)
|
292 |
)
|
293 |
|
294 |
+
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
|
295 |
result = self.tokenizer(
|
296 |
prompt,
|
297 |
truncation=True,
|
|
|
312 |
|
313 |
|
314 |
class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
|
315 |
+
"""
|
316 |
+
Tokenizing strategy for Alpaca Reflection prompts.
|
317 |
+
"""
|
318 |
+
|
319 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
|
320 |
return (
|
321 |
prompt["instruction"],
|
322 |
prompt["input"] if "input" in prompt else "",
|
|
|
327 |
|
328 |
|
329 |
class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
|
330 |
+
"""
|
331 |
+
Tokenizing strategy for ShareGPT prompts.
|
332 |
+
"""
|
333 |
+
|
334 |
def get_conversation_thread(self, prompt):
|
335 |
return prompt["conversations"]
|
336 |
|
337 |
def tokenize_prompt(self, prompt):
|
338 |
+
result, current_len = tokenize_prompt_default()
|
|
|
|
|
|
|
|
|
|
|
339 |
user_token = self._get_user_token()
|
340 |
assistant_token = self._get_assistant_token()
|
341 |
try:
|
342 |
+
for _, part in enumerate(
|
343 |
self.prompter.build_prompt(self.get_conversation_thread(prompt))
|
344 |
):
|
345 |
if isinstance(part, tuple):
|
|
|
347 |
part = part[0] + part[1] if not user_token else part[1]
|
348 |
# this is still the user query, we should
|
349 |
res = self._tokenize(
|
350 |
+
part.strip(),
|
351 |
+
add_eos_token=False,
|
352 |
+
strip_bos_token=True,
|
353 |
)
|
354 |
if user_token:
|
355 |
res["input_ids"] = [user_token, *res["input_ids"]]
|
|
|
360 |
part = part[0] + part[1] if not assistant_token else part[1]
|
361 |
# this should be the assistent response, should end with an eos token
|
362 |
res = self._tokenize(
|
363 |
+
part.strip(),
|
364 |
+
add_eos_token=True,
|
365 |
+
strip_bos_token=True,
|
366 |
)
|
367 |
if assistant_token:
|
368 |
+
res["input_ids"] = [
|
369 |
+
assistant_token,
|
370 |
+
*res["input_ids"],
|
371 |
+
]
|
372 |
# not masked out from labels
|
373 |
labels = copy.deepcopy(res["input_ids"])
|
374 |
+
elif part[0] == "SYSTEM:":
|
375 |
+
part = part[1] # Ignore the system role from preamble
|
376 |
+
# this is only ever the first part, should include the bos token and the user query
|
377 |
+
res = self._tokenize(
|
378 |
+
part.strip(), add_eos_token=False, strip_bos_token=False
|
379 |
+
)
|
380 |
+
# everything from this is masked out from the labels
|
381 |
+
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
|
382 |
else:
|
383 |
+
logging.warning(f"unhandled role: {part[0]}")
|
384 |
+
|
385 |
+
# pylint: disable=duplicate-code
|
386 |
+
result, current_len = parse_tokenized_to_result(
|
387 |
+
result,
|
388 |
+
current_len,
|
389 |
+
res,
|
390 |
+
labels,
|
391 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
392 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
return result
|
394 |
+
except (KeyError, AssertionError, IndexError) as err:
|
395 |
+
raise InvalidDataException(str(err)) from err
|
396 |
|
397 |
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
|
398 |
result = self.tokenizer(
|
|
|
416 |
|
417 |
result["labels"] = result["input_ids"].copy()
|
418 |
return result
|
419 |
+
|
420 |
+
|
421 |
+
def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]:
|
422 |
+
"""
|
423 |
+
Returns the default values for the tokenize prompt function
|
424 |
+
"""
|
425 |
+
|
426 |
+
result: Dict[str, List[int]] = {
|
427 |
+
"input_ids": [],
|
428 |
+
"attention_mask": [],
|
429 |
+
"labels": [],
|
430 |
+
}
|
431 |
+
current_len = 0
|
432 |
+
return result, current_len
|
433 |
+
|
434 |
+
|
435 |
+
def parse_tokenized_to_result(
|
436 |
+
result: Dict[str, List[int]],
|
437 |
+
current_len: int,
|
438 |
+
res: Dict[str, List[int]],
|
439 |
+
labels: list[int],
|
440 |
+
pad_token_id: Union[int, None] = None,
|
441 |
+
) -> Tuple[Dict[str, List[int]], int]:
|
442 |
+
"""
|
443 |
+
Parses the tokenized prompt and append the tokenized input_ids, attention_mask and labels to the result
|
444 |
+
"""
|
445 |
+
|
446 |
+
input_ids = res["input_ids"]
|
447 |
+
input_len = len(input_ids)
|
448 |
+
result["input_ids"][current_len : current_len + input_len] = input_ids
|
449 |
+
result["attention_mask"][current_len : current_len + input_len] = [
|
450 |
+
1 if x != pad_token_id else 0 for x in input_ids
|
451 |
+
]
|
452 |
+
result["labels"][current_len : current_len + input_len] = labels
|
453 |
+
current_len += input_len
|
454 |
+
|
455 |
+
return result, current_len
|
src/axolotl/prompters.py
CHANGED
@@ -1,28 +1,37 @@
|
|
1 |
-
|
|
|
2 |
import dataclasses
|
3 |
import logging
|
4 |
-
from enum import
|
5 |
-
from typing import List,
|
6 |
|
7 |
IGNORE_TOKEN_ID = -100
|
8 |
|
9 |
|
10 |
class PromptStyle(Enum):
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class AlpacaPrompter:
|
|
|
|
|
|
|
|
|
16 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
18 |
-
prompt_style = None
|
19 |
|
20 |
-
def __init__(self, prompt_style=PromptStyle.
|
21 |
-
self.prompt_style = prompt_style if prompt_style else PromptStyle.
|
22 |
self.match_prompt_style()
|
23 |
|
24 |
def match_prompt_style(self):
|
25 |
-
if self.prompt_style == PromptStyle.
|
26 |
self.prompt_input = (
|
27 |
self.system_prompt
|
28 |
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
@@ -32,7 +41,7 @@ class AlpacaPrompter:
|
|
32 |
+ "### Instruction:\n{instruction}\n\n### Response:\n"
|
33 |
)
|
34 |
self.response_split = "### Response:"
|
35 |
-
if self.prompt_style == PromptStyle.
|
36 |
self.prompt_input = (
|
37 |
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
|
38 |
)
|
@@ -44,7 +53,7 @@ class AlpacaPrompter:
|
|
44 |
def build_prompt(
|
45 |
self,
|
46 |
instruction: str,
|
47 |
-
input: Union[None, str] = None,
|
48 |
output: Union[None, str] = None,
|
49 |
) -> Generator[str, None, None]:
|
50 |
# returns the full prompt from instruction and optional input
|
@@ -62,33 +71,60 @@ class AlpacaPrompter:
|
|
62 |
|
63 |
|
64 |
class UnpromptedPrompter(AlpacaPrompter):
|
|
|
|
|
|
|
|
|
65 |
system_prompt = ""
|
66 |
system_no_input_prompt = ""
|
67 |
|
68 |
|
69 |
class JeopardyPrompter(AlpacaPrompter):
|
|
|
|
|
|
|
|
|
70 |
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
71 |
|
72 |
|
73 |
class MultipleChoiceExplainPrompter(AlpacaPrompter):
|
|
|
|
|
|
|
|
|
74 |
system_prompt = (
|
75 |
"Choose the answer that best answers the question. Explain your reasoning."
|
76 |
)
|
77 |
|
78 |
|
79 |
class MultipleChoiceConcisePrompter(AlpacaPrompter):
|
|
|
|
|
|
|
|
|
80 |
prompt_input = "Choose the answer that best answers the question. Be concise in your response.\n\nUSER: {instruction}\n{input}\nASSISTANT:\n"
|
81 |
|
82 |
|
83 |
class SummarizeTLDRPrompter(AlpacaPrompter):
|
|
|
|
|
|
|
|
|
84 |
prompt_no_input = (
|
85 |
"USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:"
|
86 |
)
|
87 |
|
88 |
|
89 |
class CompletionPrompter:
|
|
|
|
|
|
|
|
|
90 |
def build_prompt(
|
91 |
-
self,
|
|
|
|
|
|
|
92 |
) -> Generator[str, None, None]:
|
93 |
yield instruction
|
94 |
|
@@ -97,14 +133,22 @@ class CompletionPrompter:
|
|
97 |
|
98 |
|
99 |
class GPTeacherPrompter(AlpacaPrompter):
|
100 |
-
|
|
|
|
|
101 |
|
102 |
|
103 |
class NomicGPT4AllPrompter(AlpacaPrompter):
|
104 |
-
|
|
|
|
|
105 |
|
106 |
|
107 |
class ReflectAlpacaPrompter:
|
|
|
|
|
|
|
|
|
108 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
|
109 |
system_no_input_prompt = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
|
110 |
|
@@ -120,7 +164,7 @@ class ReflectAlpacaPrompter:
|
|
120 |
self.match_prompt_style()
|
121 |
|
122 |
def match_prompt_style(self):
|
123 |
-
if self.prompt_style == PromptStyle.
|
124 |
self.prompt_input = (
|
125 |
self.system_prompt
|
126 |
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
@@ -131,7 +175,7 @@ class ReflectAlpacaPrompter:
|
|
131 |
)
|
132 |
self.agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}"
|
133 |
self.response_split = "### Final Response:"
|
134 |
-
if self.prompt_style == PromptStyle.
|
135 |
self.prompt_input = (
|
136 |
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
|
137 |
)
|
@@ -146,7 +190,7 @@ class ReflectAlpacaPrompter:
|
|
146 |
def build_prompt(
|
147 |
self,
|
148 |
instruction: str,
|
149 |
-
input: Union[None, str] = None,
|
150 |
output: Union[None, str] = None,
|
151 |
reflection: Union[None, str] = None,
|
152 |
corrected: Union[None, str] = None,
|
@@ -159,7 +203,9 @@ class ReflectAlpacaPrompter:
|
|
159 |
res = self.prompt_no_input.format(instruction=instruction)
|
160 |
if output and reflection and corrected:
|
161 |
label = self.agent_label.format(
|
162 |
-
output=output,
|
|
|
|
|
163 |
)
|
164 |
res = f"{res}{label}"
|
165 |
yield res
|
@@ -187,18 +233,18 @@ class Conversation:
|
|
187 |
offset: int
|
188 |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
189 |
sep: str = "###"
|
190 |
-
sep2: str = None
|
191 |
|
192 |
-
def get_prompt(self) -> Generator[str, None, None]:
|
193 |
-
seps = [self.sep, self.sep2]
|
194 |
-
preamble = self.system +
|
195 |
-
yield preamble
|
196 |
-
for
|
197 |
if message:
|
198 |
yield (role + ":", " " + message)
|
199 |
else:
|
200 |
-
logging.warning("role with empty message: "
|
201 |
-
yield (role + ":",)
|
202 |
|
203 |
def copy(self):
|
204 |
return Conversation(
|
@@ -227,10 +273,14 @@ conv_vicuna_v1_1 = Conversation(
|
|
227 |
)
|
228 |
|
229 |
|
230 |
-
class ShareGPTPrompter:
|
|
|
|
|
|
|
|
|
231 |
def __init__(self, prompt_style=None):
|
232 |
-
if prompt_style != PromptStyle.
|
233 |
-
raise
|
234 |
f"unsupported prompt_style for ShareGPTPrompter({prompt_style})"
|
235 |
)
|
236 |
|
@@ -240,7 +290,7 @@ class ShareGPTPrompter:
|
|
240 |
# self.prompt_no_input = self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:"
|
241 |
# self.response_split = "ASSISTANT:"
|
242 |
|
243 |
-
def build_prompt(self, source
|
244 |
# ignore the system prompt if provided
|
245 |
if source[0]["from"] == "system":
|
246 |
source.pop(0)
|
@@ -261,9 +311,9 @@ class ShareGPTPrompter:
|
|
261 |
):
|
262 |
# Skip the first one if it is not from human
|
263 |
source = source[1:]
|
264 |
-
except IndexError as
|
265 |
# sometimes there is a bing or system chat
|
266 |
-
raise
|
267 |
|
268 |
conv.messages = []
|
269 |
for j, sentence in enumerate(source):
|
|
|
1 |
+
"""Module containing prompters"""
|
2 |
+
|
3 |
import dataclasses
|
4 |
import logging
|
5 |
+
from enum import Enum, auto
|
6 |
+
from typing import Generator, List, Optional, Tuple, Union
|
7 |
|
8 |
IGNORE_TOKEN_ID = -100
|
9 |
|
10 |
|
11 |
class PromptStyle(Enum):
|
12 |
+
"""
|
13 |
+
Enum for prompt styles
|
14 |
+
"""
|
15 |
+
|
16 |
+
INSTRUCT = "instruct"
|
17 |
+
CHAT = "chat"
|
18 |
|
19 |
|
20 |
class AlpacaPrompter:
|
21 |
+
"""
|
22 |
+
Base class for alpaca prompters
|
23 |
+
"""
|
24 |
+
|
25 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
26 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
27 |
+
prompt_style: Optional[PromptStyle] = None
|
28 |
|
29 |
+
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value):
|
30 |
+
self.prompt_style = prompt_style if prompt_style else PromptStyle.INSTRUCT.value
|
31 |
self.match_prompt_style()
|
32 |
|
33 |
def match_prompt_style(self):
|
34 |
+
if self.prompt_style == PromptStyle.INSTRUCT.value:
|
35 |
self.prompt_input = (
|
36 |
self.system_prompt
|
37 |
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
|
|
41 |
+ "### Instruction:\n{instruction}\n\n### Response:\n"
|
42 |
)
|
43 |
self.response_split = "### Response:"
|
44 |
+
if self.prompt_style == PromptStyle.CHAT.value:
|
45 |
self.prompt_input = (
|
46 |
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
|
47 |
)
|
|
|
53 |
def build_prompt(
|
54 |
self,
|
55 |
instruction: str,
|
56 |
+
input: Union[None, str] = None, # pylint: disable=redefined-builtin
|
57 |
output: Union[None, str] = None,
|
58 |
) -> Generator[str, None, None]:
|
59 |
# returns the full prompt from instruction and optional input
|
|
|
71 |
|
72 |
|
73 |
class UnpromptedPrompter(AlpacaPrompter):
|
74 |
+
"""
|
75 |
+
Prompter for alpaca no system prompt
|
76 |
+
"""
|
77 |
+
|
78 |
system_prompt = ""
|
79 |
system_no_input_prompt = ""
|
80 |
|
81 |
|
82 |
class JeopardyPrompter(AlpacaPrompter):
|
83 |
+
"""
|
84 |
+
Prompter for Jeopardy
|
85 |
+
"""
|
86 |
+
|
87 |
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
88 |
|
89 |
|
90 |
class MultipleChoiceExplainPrompter(AlpacaPrompter):
|
91 |
+
"""
|
92 |
+
Prompter for multiple choice explain
|
93 |
+
"""
|
94 |
+
|
95 |
system_prompt = (
|
96 |
"Choose the answer that best answers the question. Explain your reasoning."
|
97 |
)
|
98 |
|
99 |
|
100 |
class MultipleChoiceConcisePrompter(AlpacaPrompter):
|
101 |
+
"""
|
102 |
+
Prompter for multiple choice concise
|
103 |
+
"""
|
104 |
+
|
105 |
prompt_input = "Choose the answer that best answers the question. Be concise in your response.\n\nUSER: {instruction}\n{input}\nASSISTANT:\n"
|
106 |
|
107 |
|
108 |
class SummarizeTLDRPrompter(AlpacaPrompter):
|
109 |
+
"""
|
110 |
+
Prompter for summarize TLDR
|
111 |
+
"""
|
112 |
+
|
113 |
prompt_no_input = (
|
114 |
"USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:"
|
115 |
)
|
116 |
|
117 |
|
118 |
class CompletionPrompter:
|
119 |
+
"""
|
120 |
+
Prompter for completion
|
121 |
+
"""
|
122 |
+
|
123 |
def build_prompt(
|
124 |
+
self,
|
125 |
+
instruction: str,
|
126 |
+
input=None, # pylint: disable=redefined-builtin, unused-argument
|
127 |
+
output=None, # pylint: disable=unused-argument
|
128 |
) -> Generator[str, None, None]:
|
129 |
yield instruction
|
130 |
|
|
|
133 |
|
134 |
|
135 |
class GPTeacherPrompter(AlpacaPrompter):
|
136 |
+
"""
|
137 |
+
Prompter for GPTeacher
|
138 |
+
"""
|
139 |
|
140 |
|
141 |
class NomicGPT4AllPrompter(AlpacaPrompter):
|
142 |
+
"""
|
143 |
+
Prompter for NomicGPT4All
|
144 |
+
"""
|
145 |
|
146 |
|
147 |
class ReflectAlpacaPrompter:
|
148 |
+
"""
|
149 |
+
Prompter for ReflectAlpaca
|
150 |
+
"""
|
151 |
+
|
152 |
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
|
153 |
system_no_input_prompt = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n"
|
154 |
|
|
|
164 |
self.match_prompt_style()
|
165 |
|
166 |
def match_prompt_style(self):
|
167 |
+
if self.prompt_style == PromptStyle.INSTRUCT.value:
|
168 |
self.prompt_input = (
|
169 |
self.system_prompt
|
170 |
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
|
|
175 |
)
|
176 |
self.agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}"
|
177 |
self.response_split = "### Final Response:"
|
178 |
+
if self.prompt_style == PromptStyle.CHAT.value:
|
179 |
self.prompt_input = (
|
180 |
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:"
|
181 |
)
|
|
|
190 |
def build_prompt(
|
191 |
self,
|
192 |
instruction: str,
|
193 |
+
input: Union[None, str] = None, # pylint: disable=redefined-builtin
|
194 |
output: Union[None, str] = None,
|
195 |
reflection: Union[None, str] = None,
|
196 |
corrected: Union[None, str] = None,
|
|
|
203 |
res = self.prompt_no_input.format(instruction=instruction)
|
204 |
if output and reflection and corrected:
|
205 |
label = self.agent_label.format(
|
206 |
+
output=output,
|
207 |
+
reflection=reflection,
|
208 |
+
corrected=corrected,
|
209 |
)
|
210 |
res = f"{res}{label}"
|
211 |
yield res
|
|
|
233 |
offset: int
|
234 |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
235 |
sep: str = "###"
|
236 |
+
sep2: Optional[str] = None
|
237 |
|
238 |
+
def get_prompt(self) -> Generator[Tuple[str, str], None, None]:
|
239 |
+
# seps = [self.sep, self.sep2]
|
240 |
+
preamble = self.system + self.sep
|
241 |
+
yield ("SYSTEM:", preamble)
|
242 |
+
for _, (role, message) in enumerate(self.messages):
|
243 |
if message:
|
244 |
yield (role + ":", " " + message)
|
245 |
else:
|
246 |
+
logging.warning(f"role with empty message: {role}")
|
247 |
+
yield (role + ":", "")
|
248 |
|
249 |
def copy(self):
|
250 |
return Conversation(
|
|
|
273 |
)
|
274 |
|
275 |
|
276 |
+
class ShareGPTPrompter: # pylint: disable=too-few-public-methods
|
277 |
+
"""
|
278 |
+
A prompter that generates prompts for the ShareGPT
|
279 |
+
"""
|
280 |
+
|
281 |
def __init__(self, prompt_style=None):
|
282 |
+
if prompt_style != PromptStyle.CHAT.value:
|
283 |
+
raise ValueError(
|
284 |
f"unsupported prompt_style for ShareGPTPrompter({prompt_style})"
|
285 |
)
|
286 |
|
|
|
290 |
# self.prompt_no_input = self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:"
|
291 |
# self.response_split = "ASSISTANT:"
|
292 |
|
293 |
+
def build_prompt(self, source) -> Generator[str, None, None]:
|
294 |
# ignore the system prompt if provided
|
295 |
if source[0]["from"] == "system":
|
296 |
source.pop(0)
|
|
|
311 |
):
|
312 |
# Skip the first one if it is not from human
|
313 |
source = source[1:]
|
314 |
+
except IndexError as err:
|
315 |
# sometimes there is a bing or system chat
|
316 |
+
raise err
|
317 |
|
318 |
conv.messages = []
|
319 |
for j, sentence in enumerate(source):
|
src/axolotl/utils/callbacks.py
CHANGED
@@ -1,16 +1,19 @@
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
from transformers import (
|
4 |
-
Seq2SeqTrainer,
|
5 |
TrainerCallback,
|
6 |
-
TrainingArguments,
|
7 |
-
TrainerState,
|
8 |
TrainerControl,
|
|
|
|
|
9 |
)
|
10 |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
11 |
|
12 |
|
13 |
-
class SavePeftModelCallback(TrainerCallback):
|
|
|
|
|
14 |
def on_save(
|
15 |
self,
|
16 |
args: TrainingArguments,
|
@@ -19,7 +22,8 @@ class SavePeftModelCallback(TrainerCallback):
|
|
19 |
**kwargs,
|
20 |
):
|
21 |
checkpoint_folder = os.path.join(
|
22 |
-
args.output_dir,
|
|
|
23 |
)
|
24 |
|
25 |
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
|
|
|
1 |
+
"""Callbacks for Trainer class"""
|
2 |
+
|
3 |
import os
|
4 |
|
5 |
from transformers import (
|
|
|
6 |
TrainerCallback,
|
|
|
|
|
7 |
TrainerControl,
|
8 |
+
TrainerState,
|
9 |
+
TrainingArguments,
|
10 |
)
|
11 |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
12 |
|
13 |
|
14 |
+
class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-methods
|
15 |
+
"""Callback to save the PEFT adapter"""
|
16 |
+
|
17 |
def on_save(
|
18 |
self,
|
19 |
args: TrainingArguments,
|
|
|
22 |
**kwargs,
|
23 |
):
|
24 |
checkpoint_folder = os.path.join(
|
25 |
+
args.output_dir,
|
26 |
+
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
|
27 |
)
|
28 |
|
29 |
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
|
src/axolotl/utils/data.py
CHANGED
@@ -1,42 +1,37 @@
|
|
|
|
|
|
1 |
import logging
|
2 |
from hashlib import md5
|
3 |
from pathlib import Path
|
4 |
-
from typing import Union
|
5 |
|
6 |
-
from datasets import
|
7 |
-
load_from_disk,
|
8 |
-
load_dataset,
|
9 |
-
IterableDataset,
|
10 |
-
Dataset,
|
11 |
-
concatenate_datasets,
|
12 |
-
DatasetDict,
|
13 |
-
)
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from transformers import PreTrainedTokenizerBase
|
16 |
|
17 |
-
from axolotl.datasets import
|
18 |
from axolotl.prompt_strategies import load
|
19 |
from axolotl.prompt_tokenizers import (
|
|
|
20 |
AlpacaPromptTokenizingStrategy,
|
|
|
|
|
21 |
GPTeacherPromptTokenizingStrategy,
|
|
|
22 |
OpenAssistantPromptTokenizingStrategy,
|
23 |
-
AlpacaReflectionPTStrategy,
|
24 |
ShareGPTPromptTokenizingStrategy,
|
25 |
-
JeopardyPromptTokenizingStrategy,
|
26 |
-
CompletionPromptTokenizingStrategy,
|
27 |
-
AlpacaMultipleChoicePromptTokenizingStrategy,
|
28 |
SummarizeTLDRPromptTokenizingStrategy,
|
29 |
)
|
30 |
from axolotl.prompters import (
|
31 |
AlpacaPrompter,
|
|
|
32 |
GPTeacherPrompter,
|
33 |
-
ReflectAlpacaPrompter,
|
34 |
-
ShareGPTPrompter,
|
35 |
JeopardyPrompter,
|
36 |
-
|
37 |
MultipleChoiceExplainPrompter,
|
|
|
|
|
38 |
SummarizeTLDRPrompter,
|
39 |
-
MultipleChoiceConcisePrompter,
|
40 |
)
|
41 |
|
42 |
|
@@ -45,11 +40,13 @@ def load_tokenized_prepared_datasets(
|
|
45 |
) -> DatasetDict:
|
46 |
tokenizer_name = tokenizer.__class__.__name__
|
47 |
ds_hash = str(
|
48 |
-
md5(
|
49 |
(
|
50 |
str(cfg.sequence_len)
|
51 |
+ "@"
|
52 |
-
+ "|".join(
|
|
|
|
|
53 |
+ "|"
|
54 |
+ tokenizer_name
|
55 |
).encode("utf-8")
|
@@ -65,10 +62,11 @@ def load_tokenized_prepared_datasets(
|
|
65 |
try:
|
66 |
if cfg.push_dataset_to_hub:
|
67 |
dataset = load_dataset(
|
68 |
-
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
|
|
69 |
)
|
70 |
dataset = dataset["train"]
|
71 |
-
except:
|
72 |
pass
|
73 |
|
74 |
if dataset:
|
@@ -81,43 +79,59 @@ def load_tokenized_prepared_datasets(
|
|
81 |
logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
|
82 |
logging.info("Loading raw datasets...")
|
83 |
datasets = []
|
|
|
84 |
for d in cfg.datasets:
|
85 |
ds: Union[Dataset, DatasetDict] = None
|
86 |
ds_from_hub = False
|
87 |
try:
|
88 |
-
load_dataset(
|
|
|
|
|
|
|
|
|
89 |
ds_from_hub = True
|
90 |
except FileNotFoundError:
|
91 |
pass
|
92 |
|
93 |
# prefer local dataset, even if hub exists
|
94 |
if Path(d.path).exists():
|
95 |
-
ds
|
96 |
-
"json",
|
|
|
|
|
|
|
97 |
)
|
98 |
elif ds_from_hub:
|
99 |
if d.data_files:
|
100 |
-
ds
|
101 |
d.path,
|
102 |
streaming=False,
|
103 |
data_files=d.data_files,
|
104 |
use_auth_token=use_auth_token,
|
105 |
)
|
106 |
else:
|
107 |
-
ds
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
fp = hf_hub_download(
|
110 |
-
repo_id=d.path,
|
|
|
|
|
111 |
)
|
112 |
-
ds
|
113 |
if not ds:
|
114 |
-
raise
|
115 |
# support for using a subset of the data
|
116 |
if d.shards:
|
117 |
if "train" in ds:
|
118 |
-
ds
|
|
|
|
|
119 |
else:
|
120 |
-
ds
|
121 |
d_type = d.type
|
122 |
d_type_split = d_type.split(":")
|
123 |
d_base_type = d_type_split[0]
|
@@ -221,9 +235,9 @@ def load_tokenized_prepared_datasets(
|
|
221 |
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
|
222 |
logging.info("tokenizing, merging, and shuffling master dataset")
|
223 |
|
224 |
-
samples = []
|
225 |
for d in datasets:
|
226 |
-
samples = samples +
|
227 |
dataset = Dataset.from_list(samples).shuffle(seed=42)
|
228 |
if cfg.local_rank == 0:
|
229 |
logging.info(
|
@@ -242,8 +256,10 @@ def load_tokenized_prepared_datasets(
|
|
242 |
|
243 |
|
244 |
def load_prepare_datasets(
|
245 |
-
tokenizer: PreTrainedTokenizerBase,
|
246 |
-
|
|
|
|
|
247 |
max_packed_sequence_len = (
|
248 |
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
|
249 |
)
|
@@ -256,13 +272,15 @@ def load_prepare_datasets(
|
|
256 |
# see if we can go ahead and load the stacked dataset
|
257 |
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
|
258 |
ds_hash = str(
|
259 |
-
md5(
|
260 |
(
|
261 |
str(cfg.sequence_len)
|
262 |
+ "@"
|
263 |
+ str(max_packed_sequence_len)
|
264 |
+ seed
|
265 |
-
+ "|".join(
|
|
|
|
|
266 |
+ "|"
|
267 |
+ tokenizer_name
|
268 |
).encode("utf-8")
|
@@ -282,10 +300,11 @@ def load_prepare_datasets(
|
|
282 |
f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
|
283 |
)
|
284 |
dataset = load_dataset(
|
285 |
-
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
|
|
286 |
)
|
287 |
dataset = dataset["train"]
|
288 |
-
except:
|
289 |
pass
|
290 |
|
291 |
if dataset:
|
@@ -319,7 +338,7 @@ def load_prepare_datasets(
|
|
319 |
logging.info(
|
320 |
f"packing master dataset to len: {cfg.max_packed_sequence_len}"
|
321 |
)
|
322 |
-
dataset = Dataset.from_list(
|
323 |
|
324 |
# filter out bad data
|
325 |
dataset = Dataset.from_list(
|
@@ -343,7 +362,8 @@ def load_prepare_datasets(
|
|
343 |
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
|
344 |
)
|
345 |
dataset.push_to_hub(
|
346 |
-
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
|
|
347 |
)
|
348 |
else:
|
349 |
dataset = load_tokenized_prepared_datasets(
|
@@ -355,7 +375,8 @@ def load_prepare_datasets(
|
|
355 |
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
|
356 |
)
|
357 |
dataset = dataset.shard(
|
358 |
-
num_shards=cfg.dataset_shard_num,
|
|
|
359 |
)
|
360 |
|
361 |
dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False)
|
|
|
1 |
+
"""Module containing data utilities"""
|
2 |
+
|
3 |
import logging
|
4 |
from hashlib import md5
|
5 |
from pathlib import Path
|
6 |
+
from typing import List, Tuple, Union
|
7 |
|
8 |
+
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from transformers import PreTrainedTokenizerBase
|
11 |
|
12 |
+
from axolotl.datasets import ConstantLengthDataset, TokenizedPromptDataset
|
13 |
from axolotl.prompt_strategies import load
|
14 |
from axolotl.prompt_tokenizers import (
|
15 |
+
AlpacaMultipleChoicePromptTokenizingStrategy,
|
16 |
AlpacaPromptTokenizingStrategy,
|
17 |
+
AlpacaReflectionPTStrategy,
|
18 |
+
CompletionPromptTokenizingStrategy,
|
19 |
GPTeacherPromptTokenizingStrategy,
|
20 |
+
JeopardyPromptTokenizingStrategy,
|
21 |
OpenAssistantPromptTokenizingStrategy,
|
|
|
22 |
ShareGPTPromptTokenizingStrategy,
|
|
|
|
|
|
|
23 |
SummarizeTLDRPromptTokenizingStrategy,
|
24 |
)
|
25 |
from axolotl.prompters import (
|
26 |
AlpacaPrompter,
|
27 |
+
CompletionPrompter,
|
28 |
GPTeacherPrompter,
|
|
|
|
|
29 |
JeopardyPrompter,
|
30 |
+
MultipleChoiceConcisePrompter,
|
31 |
MultipleChoiceExplainPrompter,
|
32 |
+
ReflectAlpacaPrompter,
|
33 |
+
ShareGPTPrompter,
|
34 |
SummarizeTLDRPrompter,
|
|
|
35 |
)
|
36 |
|
37 |
|
|
|
40 |
) -> DatasetDict:
|
41 |
tokenizer_name = tokenizer.__class__.__name__
|
42 |
ds_hash = str(
|
43 |
+
md5( # nosec
|
44 |
(
|
45 |
str(cfg.sequence_len)
|
46 |
+ "@"
|
47 |
+
+ "|".join(
|
48 |
+
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
|
49 |
+
)
|
50 |
+ "|"
|
51 |
+ tokenizer_name
|
52 |
).encode("utf-8")
|
|
|
62 |
try:
|
63 |
if cfg.push_dataset_to_hub:
|
64 |
dataset = load_dataset(
|
65 |
+
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
66 |
+
use_auth_token=use_auth_token,
|
67 |
)
|
68 |
dataset = dataset["train"]
|
69 |
+
except Exception: # pylint: disable=broad-except # nosec
|
70 |
pass
|
71 |
|
72 |
if dataset:
|
|
|
79 |
logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
|
80 |
logging.info("Loading raw datasets...")
|
81 |
datasets = []
|
82 |
+
# pylint: disable=invalid-name
|
83 |
for d in cfg.datasets:
|
84 |
ds: Union[Dataset, DatasetDict] = None
|
85 |
ds_from_hub = False
|
86 |
try:
|
87 |
+
load_dataset(
|
88 |
+
d.path,
|
89 |
+
streaming=True,
|
90 |
+
use_auth_token=use_auth_token,
|
91 |
+
)
|
92 |
ds_from_hub = True
|
93 |
except FileNotFoundError:
|
94 |
pass
|
95 |
|
96 |
# prefer local dataset, even if hub exists
|
97 |
if Path(d.path).exists():
|
98 |
+
ds = load_dataset(
|
99 |
+
"json",
|
100 |
+
data_files=d.path,
|
101 |
+
streaming=False,
|
102 |
+
split=None,
|
103 |
)
|
104 |
elif ds_from_hub:
|
105 |
if d.data_files:
|
106 |
+
ds = load_dataset(
|
107 |
d.path,
|
108 |
streaming=False,
|
109 |
data_files=d.data_files,
|
110 |
use_auth_token=use_auth_token,
|
111 |
)
|
112 |
else:
|
113 |
+
ds = load_dataset(
|
114 |
+
d.path,
|
115 |
+
streaming=False,
|
116 |
+
use_auth_token=use_auth_token,
|
117 |
+
)
|
118 |
else:
|
119 |
fp = hf_hub_download(
|
120 |
+
repo_id=d.path,
|
121 |
+
repo_type="dataset",
|
122 |
+
filename=d.data_files,
|
123 |
)
|
124 |
+
ds = load_dataset("json", data_files=fp, streaming=False, split=None)
|
125 |
if not ds:
|
126 |
+
raise ValueError("unhandled dataset load")
|
127 |
# support for using a subset of the data
|
128 |
if d.shards:
|
129 |
if "train" in ds:
|
130 |
+
ds = ds.shuffle(seed=42)["train"].shard(
|
131 |
+
num_shards=d.shards, index=0
|
132 |
+
)
|
133 |
else:
|
134 |
+
ds = ds.shuffle(seed=42).shard(num_shards=d.shards, index=0)
|
135 |
d_type = d.type
|
136 |
d_type_split = d_type.split(":")
|
137 |
d_base_type = d_type_split[0]
|
|
|
235 |
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
|
236 |
logging.info("tokenizing, merging, and shuffling master dataset")
|
237 |
|
238 |
+
samples: List[int] = []
|
239 |
for d in datasets:
|
240 |
+
samples = samples + list(d)
|
241 |
dataset = Dataset.from_list(samples).shuffle(seed=42)
|
242 |
if cfg.local_rank == 0:
|
243 |
logging.info(
|
|
|
256 |
|
257 |
|
258 |
def load_prepare_datasets(
|
259 |
+
tokenizer: PreTrainedTokenizerBase,
|
260 |
+
cfg,
|
261 |
+
default_dataset_prepared_path,
|
262 |
+
) -> Tuple[Dataset, Dataset]:
|
263 |
max_packed_sequence_len = (
|
264 |
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
|
265 |
)
|
|
|
272 |
# see if we can go ahead and load the stacked dataset
|
273 |
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
|
274 |
ds_hash = str(
|
275 |
+
md5( # nosec
|
276 |
(
|
277 |
str(cfg.sequence_len)
|
278 |
+ "@"
|
279 |
+ str(max_packed_sequence_len)
|
280 |
+ seed
|
281 |
+
+ "|".join(
|
282 |
+
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
|
283 |
+
)
|
284 |
+ "|"
|
285 |
+ tokenizer_name
|
286 |
).encode("utf-8")
|
|
|
300 |
f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
|
301 |
)
|
302 |
dataset = load_dataset(
|
303 |
+
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
304 |
+
use_auth_token=use_auth_token,
|
305 |
)
|
306 |
dataset = dataset["train"]
|
307 |
+
except Exception: # pylint: disable=broad-except # nosec
|
308 |
pass
|
309 |
|
310 |
if dataset:
|
|
|
338 |
logging.info(
|
339 |
f"packing master dataset to len: {cfg.max_packed_sequence_len}"
|
340 |
)
|
341 |
+
dataset = Dataset.from_list(list(constant_len_dataset))
|
342 |
|
343 |
# filter out bad data
|
344 |
dataset = Dataset.from_list(
|
|
|
362 |
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
|
363 |
)
|
364 |
dataset.push_to_hub(
|
365 |
+
f"{cfg.push_dataset_to_hub}/{ds_hash}",
|
366 |
+
private=True,
|
367 |
)
|
368 |
else:
|
369 |
dataset = load_tokenized_prepared_datasets(
|
|
|
375 |
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
|
376 |
)
|
377 |
dataset = dataset.shard(
|
378 |
+
num_shards=cfg.dataset_shard_num,
|
379 |
+
index=cfg.dataset_shard_idx,
|
380 |
)
|
381 |
|
382 |
dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False)
|
src/axolotl/utils/dict.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
from addict import Dict
|
2 |
|
3 |
|
|
|
1 |
+
"""Module containing the DictDefault class"""
|
2 |
+
|
3 |
from addict import Dict
|
4 |
|
5 |
|
src/axolotl/utils/models.py
CHANGED
@@ -1,26 +1,22 @@
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import math
|
3 |
import os
|
4 |
from pathlib import Path
|
5 |
-
from typing import Optional, Tuple
|
6 |
|
7 |
import bitsandbytes as bnb
|
8 |
import torch
|
9 |
import transformers
|
10 |
-
from transformers import
|
11 |
-
|
12 |
-
|
13 |
-
PreTrainedModel,
|
14 |
-
AutoConfig,
|
15 |
-
BitsAndBytesConfig,
|
16 |
-
)
|
17 |
|
18 |
try:
|
19 |
-
from transformers import
|
20 |
-
|
21 |
-
LlamaTokenizer,
|
22 |
-
)
|
23 |
-
except:
|
24 |
logging.warning(
|
25 |
"This version of transformers does not support Llama. Consider upgrading."
|
26 |
)
|
@@ -28,9 +24,10 @@ except:
|
|
28 |
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
|
29 |
|
30 |
if TYPE_CHECKING:
|
31 |
-
from peft import
|
32 |
-
from
|
33 |
-
|
|
|
34 |
|
35 |
|
36 |
def load_tokenizer(
|
@@ -54,7 +51,10 @@ def load_tokenizer(
|
|
54 |
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
|
55 |
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
|
56 |
|
57 |
-
if tokenizer.__class__.__name__ in [
|
|
|
|
|
|
|
58 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
59 |
|
60 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
@@ -62,8 +62,8 @@ def load_tokenizer(
|
|
62 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
63 |
|
64 |
if cfg.special_tokens:
|
65 |
-
for k,
|
66 |
-
tokenizer.add_special_tokens({k:
|
67 |
if cfg.tokens:
|
68 |
tokenizer.add_tokens(list(cfg.tokens))
|
69 |
|
@@ -79,7 +79,10 @@ def load_model(
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
-
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel,
|
|
|
|
|
|
|
83 |
|
84 |
# TODO refactor as a kwarg
|
85 |
load_in_8bit = cfg.load_in_8bit
|
@@ -115,9 +118,9 @@ def load_model(
|
|
115 |
|
116 |
replace_peft_model_with_int4_lora_model()
|
117 |
from peft import prepare_model_for_int8_training
|
118 |
-
except Exception as
|
119 |
-
logging.exception(
|
120 |
-
raise
|
121 |
|
122 |
model_kwargs = {}
|
123 |
if cfg.adapter == "qlora" and cfg.load_in_4bit:
|
@@ -155,7 +158,7 @@ def load_model(
|
|
155 |
"unable to find a cached model file, this will likely fail..."
|
156 |
)
|
157 |
model_path = str(cache_model_path)
|
158 |
-
except:
|
159 |
model_path = cfg.base_model
|
160 |
model, _ = load_llama_model_4bit_low_ram(
|
161 |
base_model_config if base_model_config else base_model,
|
@@ -210,13 +213,13 @@ def load_model(
|
|
210 |
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
211 |
torch_dtype=torch_dtype,
|
212 |
device_map=cfg.device_map,
|
213 |
-
trust_remote_code=
|
214 |
**model_kwargs,
|
215 |
)
|
216 |
else:
|
217 |
config = AutoConfig.from_pretrained(
|
218 |
base_model,
|
219 |
-
trust_remote_code=
|
220 |
)
|
221 |
model = AutoModelForCausalLM.from_pretrained(
|
222 |
base_model,
|
@@ -225,30 +228,29 @@ def load_model(
|
|
225 |
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
226 |
torch_dtype=torch_dtype,
|
227 |
device_map=cfg.device_map,
|
228 |
-
trust_remote_code=
|
229 |
**model_kwargs,
|
230 |
)
|
231 |
-
except Exception as
|
232 |
logging.error(
|
233 |
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
|
234 |
)
|
235 |
-
logging.exception(
|
236 |
model = AutoModelForCausalLM.from_pretrained(
|
237 |
base_model,
|
238 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
239 |
torch_dtype=torch_dtype,
|
240 |
device_map=cfg.device_map,
|
241 |
-
trust_remote_code=
|
242 |
**model_kwargs,
|
243 |
)
|
244 |
|
245 |
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
|
246 |
model.resize_token_embeddings(embeddings_len)
|
247 |
|
248 |
-
if (
|
249 |
-
(
|
250 |
-
and
|
251 |
-
and (load_in_8bit or cfg.load_in_4bit)
|
252 |
):
|
253 |
logging.info("converting PEFT model w/ prepare_model_for_int8_training")
|
254 |
model = prepare_model_for_int8_training(model)
|
@@ -261,14 +263,14 @@ def load_model(
|
|
261 |
if cfg.gptq:
|
262 |
# Scales to half
|
263 |
logging.info("Fitting 4bit scales and zeros to half")
|
264 |
-
for
|
265 |
-
if "Autograd4bitQuantLinear" in str(type(
|
266 |
-
type(
|
267 |
):
|
268 |
-
if hasattr(
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
|
273 |
if (
|
274 |
torch.cuda.device_count() > 1
|
@@ -278,8 +280,8 @@ def load_model(
|
|
278 |
# llama is PROBABLY model parallelizable, but the default isn't that it is
|
279 |
# so let's only set it for the 4bit, see
|
280 |
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
|
281 |
-
setattr(model,
|
282 |
-
setattr(model,
|
283 |
|
284 |
requires_grad = []
|
285 |
for name, param in model.named_parameters(recurse=True):
|
@@ -308,11 +310,7 @@ def load_adapter(model, cfg, adapter):
|
|
308 |
|
309 |
def load_llama_adapter(model, cfg):
|
310 |
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
311 |
-
from peft import
|
312 |
-
AdaptionPromptConfig,
|
313 |
-
get_peft_model,
|
314 |
-
PeftModel,
|
315 |
-
)
|
316 |
|
317 |
peft_config = AdaptionPromptConfig(
|
318 |
adapter_layers=cfg.peft_adapter.layers, # layers (L)
|
@@ -357,11 +355,7 @@ def find_all_linear_names(bits, model):
|
|
357 |
def load_lora(model, cfg):
|
358 |
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
359 |
|
360 |
-
from peft import
|
361 |
-
LoraConfig,
|
362 |
-
get_peft_model,
|
363 |
-
PeftModel,
|
364 |
-
)
|
365 |
|
366 |
lora_target_modules = list(cfg.lora_target_modules or [])
|
367 |
|
|
|
1 |
+
"""Module for models and model loading"""
|
2 |
+
|
3 |
+
|
4 |
import logging
|
5 |
import math
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401
|
9 |
|
10 |
import bitsandbytes as bnb
|
11 |
import torch
|
12 |
import transformers
|
13 |
+
from transformers import AutoModelForCausalLM # noqa: F401
|
14 |
+
from transformers import PreTrainedModel # noqa: F401
|
15 |
+
from transformers import AutoConfig, AutoTokenizer, BitsAndBytesConfig
|
|
|
|
|
|
|
|
|
16 |
|
17 |
try:
|
18 |
+
from transformers import LlamaForCausalLM
|
19 |
+
except ImportError:
|
|
|
|
|
|
|
20 |
logging.warning(
|
21 |
"This version of transformers does not support Llama. Consider upgrading."
|
22 |
)
|
|
|
24 |
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
|
25 |
|
26 |
if TYPE_CHECKING:
|
27 |
+
from peft import PeftConfig # noqa: F401
|
28 |
+
from transformers import PreTrainedTokenizer # noqa: F401
|
29 |
+
|
30 |
+
from axolotl.utils.dict import DictDefault # noqa: F401
|
31 |
|
32 |
|
33 |
def load_tokenizer(
|
|
|
51 |
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
|
52 |
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
|
53 |
|
54 |
+
if tokenizer.__class__.__name__ in [
|
55 |
+
"LlamaTokenizer",
|
56 |
+
"LlamaTokenizerFast",
|
57 |
+
]:
|
58 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
59 |
|
60 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
|
|
62 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
63 |
|
64 |
if cfg.special_tokens:
|
65 |
+
for k, val in cfg.special_tokens.items():
|
66 |
+
tokenizer.add_special_tokens({k: val})
|
67 |
if cfg.tokens:
|
68 |
tokenizer.add_tokens(list(cfg.tokens))
|
69 |
|
|
|
79 |
adapter="lora",
|
80 |
inference=False,
|
81 |
):
|
82 |
+
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
83 |
+
"""
|
84 |
+
Load a model from a base model and a model type.
|
85 |
+
"""
|
86 |
|
87 |
# TODO refactor as a kwarg
|
88 |
load_in_8bit = cfg.load_in_8bit
|
|
|
118 |
|
119 |
replace_peft_model_with_int4_lora_model()
|
120 |
from peft import prepare_model_for_int8_training
|
121 |
+
except Exception as err:
|
122 |
+
logging.exception(err)
|
123 |
+
raise err
|
124 |
|
125 |
model_kwargs = {}
|
126 |
if cfg.adapter == "qlora" and cfg.load_in_4bit:
|
|
|
158 |
"unable to find a cached model file, this will likely fail..."
|
159 |
)
|
160 |
model_path = str(cache_model_path)
|
161 |
+
except Exception: # pylint: disable=broad-exception-caught
|
162 |
model_path = cfg.base_model
|
163 |
model, _ = load_llama_model_4bit_low_ram(
|
164 |
base_model_config if base_model_config else base_model,
|
|
|
213 |
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
214 |
torch_dtype=torch_dtype,
|
215 |
device_map=cfg.device_map,
|
216 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
217 |
**model_kwargs,
|
218 |
)
|
219 |
else:
|
220 |
config = AutoConfig.from_pretrained(
|
221 |
base_model,
|
222 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
223 |
)
|
224 |
model = AutoModelForCausalLM.from_pretrained(
|
225 |
base_model,
|
|
|
228 |
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
229 |
torch_dtype=torch_dtype,
|
230 |
device_map=cfg.device_map,
|
231 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
232 |
**model_kwargs,
|
233 |
)
|
234 |
+
except Exception as err: # pylint: disable=broad-exception-caught
|
235 |
logging.error(
|
236 |
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
|
237 |
)
|
238 |
+
logging.exception(err)
|
239 |
model = AutoModelForCausalLM.from_pretrained(
|
240 |
base_model,
|
241 |
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
242 |
torch_dtype=torch_dtype,
|
243 |
device_map=cfg.device_map,
|
244 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
245 |
**model_kwargs,
|
246 |
)
|
247 |
|
248 |
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
|
249 |
model.resize_token_embeddings(embeddings_len)
|
250 |
|
251 |
+
if not cfg.gptq and (
|
252 |
+
(cfg.adapter == "lora" and load_in_8bit)
|
253 |
+
or (cfg.adapter == "qlora" and cfg.load_in_4bit)
|
|
|
254 |
):
|
255 |
logging.info("converting PEFT model w/ prepare_model_for_int8_training")
|
256 |
model = prepare_model_for_int8_training(model)
|
|
|
263 |
if cfg.gptq:
|
264 |
# Scales to half
|
265 |
logging.info("Fitting 4bit scales and zeros to half")
|
266 |
+
for _, module in model.named_modules():
|
267 |
+
if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str(
|
268 |
+
type(module)
|
269 |
):
|
270 |
+
if hasattr(module, "is_v1_model") and module.is_v1_model:
|
271 |
+
module.zeros = module.zeros.half()
|
272 |
+
module.scales = module.scales.half()
|
273 |
+
module.bias = module.bias.half()
|
274 |
|
275 |
if (
|
276 |
torch.cuda.device_count() > 1
|
|
|
280 |
# llama is PROBABLY model parallelizable, but the default isn't that it is
|
281 |
# so let's only set it for the 4bit, see
|
282 |
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
|
283 |
+
setattr(model, "is_parallelizable", True)
|
284 |
+
setattr(model, "model_parallel", True)
|
285 |
|
286 |
requires_grad = []
|
287 |
for name, param in model.named_parameters(recurse=True):
|
|
|
310 |
|
311 |
def load_llama_adapter(model, cfg):
|
312 |
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
313 |
+
from peft import AdaptionPromptConfig, PeftModel, get_peft_model
|
|
|
|
|
|
|
|
|
314 |
|
315 |
peft_config = AdaptionPromptConfig(
|
316 |
adapter_layers=cfg.peft_adapter.layers, # layers (L)
|
|
|
355 |
def load_lora(model, cfg):
|
356 |
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
357 |
|
358 |
+
from peft import LoraConfig, PeftModel, get_peft_model
|
|
|
|
|
|
|
|
|
359 |
|
360 |
lora_target_modules = list(cfg.lora_target_modules or [])
|
361 |
|
src/axolotl/utils/schedulers.py
CHANGED
@@ -1,7 +1,13 @@
|
|
|
|
|
|
1 |
from torch.optim.lr_scheduler import LRScheduler
|
2 |
|
3 |
|
4 |
class InterpolatingLogScheduler(LRScheduler):
|
|
|
|
|
|
|
|
|
5 |
def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1):
|
6 |
"""A scheduler that interpolates learning rates in a logarithmic fashion
|
7 |
|
@@ -19,7 +25,9 @@ class InterpolatingLogScheduler(LRScheduler):
|
|
19 |
self.num_steps = num_steps
|
20 |
self.min_lr = min_lr
|
21 |
self.max_lr = max_lr
|
22 |
-
self.q = (max_lr / min_lr) ** (
|
|
|
|
|
23 |
super().__init__(optimizer, last_epoch)
|
24 |
|
25 |
def get_lr(self):
|
|
|
1 |
+
"""Module for custom LRScheduler class"""
|
2 |
+
|
3 |
from torch.optim.lr_scheduler import LRScheduler
|
4 |
|
5 |
|
6 |
class InterpolatingLogScheduler(LRScheduler):
|
7 |
+
"""
|
8 |
+
A scheduler that interpolates learning rates in a logarithmic fashion
|
9 |
+
"""
|
10 |
+
|
11 |
def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1):
|
12 |
"""A scheduler that interpolates learning rates in a logarithmic fashion
|
13 |
|
|
|
25 |
self.num_steps = num_steps
|
26 |
self.min_lr = min_lr
|
27 |
self.max_lr = max_lr
|
28 |
+
self.q = (max_lr / min_lr) ** ( # pylint: disable=invalid-name
|
29 |
+
1 / (num_steps - 1)
|
30 |
+
)
|
31 |
super().__init__(optimizer, last_epoch)
|
32 |
|
33 |
def get_lr(self):
|
src/axolotl/utils/tokenization.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
-
|
|
|
|
|
2 |
import logging
|
3 |
|
|
|
|
|
4 |
|
5 |
def check_dataset_labels(dataset, tokenizer):
|
6 |
# the dataset is already shuffled, so let's just check the first 5 elements
|
@@ -17,7 +21,7 @@ def check_example_labels(example, tokenizer):
|
|
17 |
# You can compare the input_ids and labels element-wise
|
18 |
# Remember to ignore positions with IGNORE_TOKEN_ID (if you use it) or attention_mask equal to 0
|
19 |
colored_tokens = []
|
20 |
-
for
|
21 |
zip(input_ids, labels, attention_mask)
|
22 |
):
|
23 |
decoded_input_token = tokenizer.decode(input_id)
|
|
|
1 |
+
"""Module for tokenization utilities"""
|
2 |
+
|
3 |
+
|
4 |
import logging
|
5 |
|
6 |
+
from termcolor import colored
|
7 |
+
|
8 |
|
9 |
def check_dataset_labels(dataset, tokenizer):
|
10 |
# the dataset is already shuffled, so let's just check the first 5 elements
|
|
|
21 |
# You can compare the input_ids and labels element-wise
|
22 |
# Remember to ignore positions with IGNORE_TOKEN_ID (if you use it) or attention_mask equal to 0
|
23 |
colored_tokens = []
|
24 |
+
for _, (input_id, label_id, mask) in enumerate(
|
25 |
zip(input_ids, labels, attention_mask)
|
26 |
):
|
27 |
decoded_input_token = tokenizer.decode(input_id)
|
src/axolotl/utils/trainer.py
CHANGED
@@ -1,8 +1,11 @@
|
|
|
|
|
|
1 |
import importlib
|
2 |
import math
|
3 |
import os
|
4 |
import sys
|
5 |
from pathlib import Path
|
|
|
6 |
|
7 |
import bitsandbytes as bnb
|
8 |
import torch.cuda
|
@@ -12,17 +15,26 @@ from torch.optim.lr_scheduler import OneCycleLR
|
|
12 |
from transformers import EarlyStoppingCallback, Trainer
|
13 |
from transformers.trainer_pt_utils import get_parameter_names
|
14 |
|
15 |
-
from axolotl.utils.schedulers import InterpolatingLogScheduler
|
16 |
from axolotl.utils.callbacks import SavePeftModelCallback
|
|
|
17 |
|
18 |
|
19 |
class OneCycleLRSchedulerTrainer(Trainer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def create_scheduler(
|
21 |
-
self,
|
|
|
|
|
22 |
):
|
23 |
optimizer = self.optimizer if optimizer is None else optimizer
|
24 |
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
25 |
-
num_training_steps = num_training_steps
|
26 |
pct_start = num_warmup_steps / num_training_steps
|
27 |
|
28 |
self.lr_scheduler = OneCycleLR(
|
@@ -58,11 +70,11 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
58 |
training_arguments_kwargs["bf16_full_eval"] = True
|
59 |
else:
|
60 |
training_arguments_kwargs["bf16"] = cfg.bf16
|
61 |
-
training_arguments_kwargs["fp16"] =
|
62 |
training_arguments_kwargs["tf32"] = cfg.tf32
|
63 |
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
64 |
training_arguments_kwargs["logging_steps"] = logging_steps
|
65 |
-
if cfg.gradient_checkpointing
|
66 |
if cfg.gptq:
|
67 |
from alpaca_lora_4bit.gradient_checkpointing import (
|
68 |
apply_gradient_checkpointing,
|
@@ -112,13 +124,14 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
112 |
save_steps=save_steps,
|
113 |
output_dir=cfg.output_dir,
|
114 |
save_total_limit=3,
|
115 |
-
load_best_model_at_end=
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
ddp_find_unused_parameters=False if cfg.ddp else None,
|
123 |
group_by_length=cfg.group_by_length,
|
124 |
report_to="wandb" if cfg.use_wandb else None,
|
@@ -140,7 +153,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
140 |
if (
|
141 |
cfg.optimizer == "adamw_bnb_8bit"
|
142 |
and not cfg.gptq
|
143 |
-
and
|
144 |
and not cfg.fsdp
|
145 |
):
|
146 |
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
@@ -206,7 +219,10 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
206 |
)
|
207 |
callbacks.append(early_stop_cb)
|
208 |
|
209 |
-
if cfg.local_rank == 0 and cfg.adapter in [
|
|
|
|
|
|
|
210 |
callbacks.append(SavePeftModelCallback)
|
211 |
|
212 |
data_collator_kwargs = {
|
|
|
1 |
+
"""Module containing the Trainer class and related functions"""
|
2 |
+
|
3 |
import importlib
|
4 |
import math
|
5 |
import os
|
6 |
import sys
|
7 |
from pathlib import Path
|
8 |
+
from typing import Optional
|
9 |
|
10 |
import bitsandbytes as bnb
|
11 |
import torch.cuda
|
|
|
15 |
from transformers import EarlyStoppingCallback, Trainer
|
16 |
from transformers.trainer_pt_utils import get_parameter_names
|
17 |
|
|
|
18 |
from axolotl.utils.callbacks import SavePeftModelCallback
|
19 |
+
from axolotl.utils.schedulers import InterpolatingLogScheduler
|
20 |
|
21 |
|
22 |
class OneCycleLRSchedulerTrainer(Trainer):
|
23 |
+
"""
|
24 |
+
Trainer subclass that uses the OneCycleLR scheduler
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, *args, **kwargs):
|
28 |
+
super().__init__(*args, **kwargs)
|
29 |
+
self.lr_scheduler = None
|
30 |
+
|
31 |
def create_scheduler(
|
32 |
+
self,
|
33 |
+
num_training_steps: int,
|
34 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
35 |
):
|
36 |
optimizer = self.optimizer if optimizer is None else optimizer
|
37 |
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
|
|
38 |
pct_start = num_warmup_steps / num_training_steps
|
39 |
|
40 |
self.lr_scheduler = OneCycleLR(
|
|
|
70 |
training_arguments_kwargs["bf16_full_eval"] = True
|
71 |
else:
|
72 |
training_arguments_kwargs["bf16"] = cfg.bf16
|
73 |
+
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
|
74 |
training_arguments_kwargs["tf32"] = cfg.tf32
|
75 |
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
76 |
training_arguments_kwargs["logging_steps"] = logging_steps
|
77 |
+
if cfg.gradient_checkpointing:
|
78 |
if cfg.gptq:
|
79 |
from alpaca_lora_4bit.gradient_checkpointing import (
|
80 |
apply_gradient_checkpointing,
|
|
|
124 |
save_steps=save_steps,
|
125 |
output_dir=cfg.output_dir,
|
126 |
save_total_limit=3,
|
127 |
+
load_best_model_at_end=(
|
128 |
+
cfg.load_best_model_at_end is not False
|
129 |
+
and cfg.val_set_size > 0
|
130 |
+
and save_steps
|
131 |
+
and save_steps % eval_steps == 0
|
132 |
+
and cfg.load_in_8bit is not True
|
133 |
+
)
|
134 |
+
or False,
|
135 |
ddp_find_unused_parameters=False if cfg.ddp else None,
|
136 |
group_by_length=cfg.group_by_length,
|
137 |
report_to="wandb" if cfg.use_wandb else None,
|
|
|
153 |
if (
|
154 |
cfg.optimizer == "adamw_bnb_8bit"
|
155 |
and not cfg.gptq
|
156 |
+
and "deepspeed" not in training_arguments_kwargs
|
157 |
and not cfg.fsdp
|
158 |
):
|
159 |
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
|
|
219 |
)
|
220 |
callbacks.append(early_stop_cb)
|
221 |
|
222 |
+
if cfg.local_rank == 0 and cfg.adapter in [
|
223 |
+
"lora",
|
224 |
+
"qlora",
|
225 |
+
]: # only save in rank 0
|
226 |
callbacks.append(SavePeftModelCallback)
|
227 |
|
228 |
data_collator_kwargs = {
|
src/axolotl/utils/validation.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import logging
|
2 |
|
3 |
|
@@ -38,7 +40,9 @@ def validate_config(cfg):
|
|
38 |
)
|
39 |
|
40 |
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
|
41 |
-
raise ValueError(
|
|
|
|
|
42 |
|
43 |
# TODO
|
44 |
# MPT 7b
|
|
|
1 |
+
"""Module for validating config files"""
|
2 |
+
|
3 |
import logging
|
4 |
|
5 |
|
|
|
40 |
)
|
41 |
|
42 |
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
|
43 |
+
raise ValueError(
|
44 |
+
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
|
45 |
+
)
|
46 |
|
47 |
# TODO
|
48 |
# MPT 7b
|
src/axolotl/utils/wandb.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
|
|
|
1 |
+
"""Module for wandb utilities"""
|
2 |
+
|
3 |
import os
|
4 |
|
5 |
|
tests/fixtures/conversation.tokenized.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"input_ids": [1, 319, 13563, 1546, 263, 12758, 1404, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 1404, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 920, 1033, 474, 2334, 263, 29086, 705, 11356, 5687, 393, 3667, 4637, 21531, 20159, 304, 4505, 1045, 3163, 29973, 319, 1799, 9047, 13566, 29901, 739, 29915, 29879, 1950, 304, 671, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29892, 541, 372, 723, 5517, 367, 3755, 4280, 29889, 838, 5869, 293, 20159, 338, 263, 5443, 310, 23964, 393, 11898, 278, 4426, 310, 8162, 393, 526, 21634, 1090, 9126, 316, 689, 800, 29892, 1316, 408, 16116, 292, 322, 289, 2548, 29889, 512, 278, 3030, 310, 341, 1475, 705, 11356, 29892, 445, 1033, 367, 1304, 304, 27599, 278, 3829, 310, 278, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 2398, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 739, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, 3148, 1001, 29901, 1033, 366, 2367, 592, 278, 330, 391, 310, 920, 372, 1033, 2466, 29973, 319, 1799, 9047, 13566, 29901, 18585, 29889, 450, 6996, 2969, 723, 367, 304, 671, 21531, 20159, 304, 27599, 278, 3829, 310, 278, 341, 1475, 705, 11356, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 910, 1033, 25135, 15783, 278, 3748, 7613, 408, 263, 25002, 2913, 322, 773, 25002, 15939, 1934, 1316, 408, 3632, 327, 2270, 6471, 322, 350, 9890, 3694, 304, 10115, 2472, 1048, 278, 4423, 310, 29086, 373, 278, 7613, 29889, 2398, 29892, 408, 306, 5276, 1434, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 577, 372, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, 3148, 1001, 29901, 2367, 592, 263, 2702, 1342, 319, 1799, 9047, 13566, 29901, 1094, 263, 2702, 1342, 29892, 7755, 591, 505, 263, 341, 1475, 705, 11356, 3748, 7613, 411, 278, 1494, 5285, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 797, 445, 1206, 29892, 278, 3748, 7613, 508, 367, 9875, 408, 263, 25002, 2913, 29892, 988, 1269, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29889, 450, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 5293, 21531, 20159, 29892, 591, 508, 27599, 278, 3829, 310, 445, 2913, 322, 8161, 278, 14354, 310, 278, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 13, 13, 2831, 2777, 29892, 697, 982, 304, 437, 445, 338, 304, 10272, 278, 3632, 327, 2270, 6471, 310, 278, 2913, 29889, 15089, 327, 2270, 6471, 526, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 29892, 322, 896, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 512, 278, 1206, 310, 278, 7613, 2038, 29892, 591, 508, 10272, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 29892, 607, 16612, 278, 1353, 322, 376, 12181, 29908, 310, 278, 26532, 297, 278, 2913, 29889, 512, 445, 1206, 29892, 278, 937, 3632, 327, 2270, 2318, 723, 2649, 502, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29889, 13, 13, 29933, 1463, 373, 445, 2472, 29892, 591, 508, 10115, 393, 278, 29086, 297, 278, 3748, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29892, 408, 4318, 2400, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 341, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 341, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1342, 310, 920, 21531, 20159, 1033, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 526, 1784, 916, 1950, 13501, 29892, 322, 278, 2702, 4902, 310, 920, 304, 2334, 963, 723, 8839, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 1094, 306, 5276, 1434, 29892, 16049, 263, 1650, 763, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 10241, 474, 471, 4856, 411, 263, 6483, 8004, 310, 1716, 29892, 1033, 366, 5649, 278, 1021, 6964, 304, 592, 411, 393, 11833, 29973, 319, 1799, 9047, 13566, 29901, 18585, 29889, 17090, 366, 505, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 1244, 338, 920, 366, 1795, 671, 21531, 20159, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 4803, 25002, 15939, 1934, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1670, 526, 1784, 1950, 25002, 15939, 1934, 393, 1033, 367, 1304, 363, 445, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29941, 29889, 4803, 278, 2472, 10115, 1127, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 21531, 20159, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 920, 723, 474, 437, 372, 411, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 29973, 319, 1799, 9047, 13566, 29901, 1763, 671, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29892, 366, 723, 1101, 278, 1021, 6996, 6576, 408, 5439, 2038, 29892, 541, 411, 777, 12651, 297, 278, 2702, 4902, 29889, 13, 13, 2831, 2777, 29892, 1244, 338, 920, 366, 1795, 671, 28152, 3632, 3002, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 11796, 29872, 278, 28152, 3632, 3002, 310, 278, 2913, 29889, 9034, 9696, 3632, 3002, 338, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 975, 931, 29892, 322, 372, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 13, 29941, 29889, 4803, 278, 2472, 515, 278, 28152, 3632, 3002, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 28152, 3632, 3002, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 2702, 4902, 310, 278, 28152, 3632, 3002, 16287, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 28152, 3632, 3002, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 920, 1033, 474, 2334, 445, 297, 3017, 29973, 319, 1799, 9047, 13566, 29901, 1763, 2334, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29892, 366, 723, 817, 304, 437, 278, 1494, 29901, 13, 13, 29896, 29889, 16052, 263, 5132, 3577, 363, 21531, 20159, 29889, 1670, 526, 3196, 3987, 3625, 29892, 1316, 408, 402, 566, 2918, 29892, 360, 291, 952, 375, 29892, 470, 4560, 7354, 29899, 29873, 1388, 29889, 4525, 9741, 3867, 14009, 322, 848, 12286, 363, 20602, 25002, 15939, 1934, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29906, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 910, 1033, 367, 2309, 773, 263, 848, 3829, 4944, 491, 278, 21531, 20159, 3577, 29892, 1316, 408, 263, 3053, 506, 616, 4280, 470, 263, 478, 2035, 29367, 29899, 29934, 4512, 4280, 29889, 7806, 6862, 373, 278, 7613, 723, 3928, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 723, 367, 9875, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29889, 13, 29941, 29889, 11796, 29872, 278, 25002, 15939, 1934, 310, 278, 2913, 29889, 910, 1033, 367, 2309, 773, 14009, 4944, 491, 278, 21531, 20159, 3577, 29889, 1152, 1342, 29892, 366, 1033, 10272, 278, 28152, 3632, 3002, 310, 278, 2913, 773, 278, 28152, 3632, 3002, 5687, 29889, 13, 29946, 29889, 4803, 278, 2472, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 910, 1033, 367, 2309, 773, 263, 10296, 310, 19475, 24481, 322, 8720, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 366, 1033, 671, 263, 8424, 310, 775, 304, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29945, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 1033, 671, 263, 8424, 310, 775, 304, 6336, 2828, 373, 278, 9109, 25256, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 16049, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 4902, 310, 278, 5314, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 304, 679, 4687, 411, 1316, 263, 2060, 29889, 2], "attention_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 739, 29915, 29879, 1950, 304, 671, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29892, 541, 372, 723, 5517, 367, 3755, 4280, 29889, 838, 5869, 293, 20159, 338, 263, 5443, 310, 23964, 393, 11898, 278, 4426, 310, 8162, 393, 526, 21634, 1090, 9126, 316, 689, 800, 29892, 1316, 408, 16116, 292, 322, 289, 2548, 29889, 512, 278, 3030, 310, 341, 1475, 705, 11356, 29892, 445, 1033, 367, 1304, 304, 27599, 278, 3829, 310, 278, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 2398, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 739, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 18585, 29889, 450, 6996, 2969, 723, 367, 304, 671, 21531, 20159, 304, 27599, 278, 3829, 310, 278, 341, 1475, 705, 11356, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 910, 1033, 25135, 15783, 278, 3748, 7613, 408, 263, 25002, 2913, 322, 773, 25002, 15939, 1934, 1316, 408, 3632, 327, 2270, 6471, 322, 350, 9890, 3694, 304, 10115, 2472, 1048, 278, 4423, 310, 29086, 373, 278, 7613, 29889, 2398, 29892, 408, 306, 5276, 1434, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 577, 372, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1094, 263, 2702, 1342, 29892, 7755, 591, 505, 263, 341, 1475, 705, 11356, 3748, 7613, 411, 278, 1494, 5285, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 797, 445, 1206, 29892, 278, 3748, 7613, 508, 367, 9875, 408, 263, 25002, 2913, 29892, 988, 1269, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29889, 450, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 5293, 21531, 20159, 29892, 591, 508, 27599, 278, 3829, 310, 445, 2913, 322, 8161, 278, 14354, 310, 278, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 13, 13, 2831, 2777, 29892, 697, 982, 304, 437, 445, 338, 304, 10272, 278, 3632, 327, 2270, 6471, 310, 278, 2913, 29889, 15089, 327, 2270, 6471, 526, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 29892, 322, 896, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 512, 278, 1206, 310, 278, 7613, 2038, 29892, 591, 508, 10272, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 29892, 607, 16612, 278, 1353, 322, 376, 12181, 29908, 310, 278, 26532, 297, 278, 2913, 29889, 512, 445, 1206, 29892, 278, 937, 3632, 327, 2270, 2318, 723, 2649, 502, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29889, 13, 13, 29933, 1463, 373, 445, 2472, 29892, 591, 508, 10115, 393, 278, 29086, 297, 278, 3748, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29892, 408, 4318, 2400, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 341, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 341, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1342, 310, 920, 21531, 20159, 1033, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 526, 1784, 916, 1950, 13501, 29892, 322, 278, 2702, 4902, 310, 920, 304, 2334, 963, 723, 8839, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 1094, 306, 5276, 1434, 29892, 16049, 263, 1650, 763, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 18585, 29889, 17090, 366, 505, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 1244, 338, 920, 366, 1795, 671, 21531, 20159, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 4803, 25002, 15939, 1934, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1670, 526, 1784, 1950, 25002, 15939, 1934, 393, 1033, 367, 1304, 363, 445, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29941, 29889, 4803, 278, 2472, 10115, 1127, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 21531, 20159, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1763, 671, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29892, 366, 723, 1101, 278, 1021, 6996, 6576, 408, 5439, 2038, 29892, 541, 411, 777, 12651, 297, 278, 2702, 4902, 29889, 13, 13, 2831, 2777, 29892, 1244, 338, 920, 366, 1795, 671, 28152, 3632, 3002, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 11796, 29872, 278, 28152, 3632, 3002, 310, 278, 2913, 29889, 9034, 9696, 3632, 3002, 338, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 975, 931, 29892, 322, 372, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 13, 29941, 29889, 4803, 278, 2472, 515, 278, 28152, 3632, 3002, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 28152, 3632, 3002, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 2702, 4902, 310, 278, 28152, 3632, 3002, 16287, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 28152, 3632, 3002, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1763, 2334, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29892, 366, 723, 817, 304, 437, 278, 1494, 29901, 13, 13, 29896, 29889, 16052, 263, 5132, 3577, 363, 21531, 20159, 29889, 1670, 526, 3196, 3987, 3625, 29892, 1316, 408, 402, 566, 2918, 29892, 360, 291, 952, 375, 29892, 470, 4560, 7354, 29899, 29873, 1388, 29889, 4525, 9741, 3867, 14009, 322, 848, 12286, 363, 20602, 25002, 15939, 1934, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29906, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 910, 1033, 367, 2309, 773, 263, 848, 3829, 4944, 491, 278, 21531, 20159, 3577, 29892, 1316, 408, 263, 3053, 506, 616, 4280, 470, 263, 478, 2035, 29367, 29899, 29934, 4512, 4280, 29889, 7806, 6862, 373, 278, 7613, 723, 3928, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 723, 367, 9875, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29889, 13, 29941, 29889, 11796, 29872, 278, 25002, 15939, 1934, 310, 278, 2913, 29889, 910, 1033, 367, 2309, 773, 14009, 4944, 491, 278, 21531, 20159, 3577, 29889, 1152, 1342, 29892, 366, 1033, 10272, 278, 28152, 3632, 3002, 310, 278, 2913, 773, 278, 28152, 3632, 3002, 5687, 29889, 13, 29946, 29889, 4803, 278, 2472, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 910, 1033, 367, 2309, 773, 263, 10296, 310, 19475, 24481, 322, 8720, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 366, 1033, 671, 263, 8424, 310, 775, 304, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29945, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 1033, 671, 263, 8424, 310, 775, 304, 6336, 2828, 373, 278, 9109, 25256, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 16049, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 4902, 310, 278, 5314, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 304, 679, 4687, 411, 1316, 263, 2060, 29889, 2]}
|
|
|
1 |
+
{"input_ids": [1, 319, 13563, 1546, 263, 12758, 1404, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 1404, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 920, 1033, 474, 2334, 263, 29086, 705, 11356, 5687, 393, 3667, 4637, 21531, 20159, 304, 4505, 1045, 3163, 29973, 319, 1799, 9047, 13566, 29901, 739, 29915, 29879, 1950, 304, 671, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29892, 541, 372, 723, 5517, 367, 3755, 4280, 29889, 838, 5869, 293, 20159, 338, 263, 5443, 310, 23964, 393, 11898, 278, 4426, 310, 8162, 393, 526, 21634, 1090, 9126, 316, 689, 800, 29892, 1316, 408, 16116, 292, 322, 289, 2548, 29889, 512, 278, 3030, 310, 341, 1475, 705, 11356, 29892, 445, 1033, 367, 1304, 304, 27599, 278, 3829, 310, 278, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 2398, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 739, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, 3148, 1001, 29901, 1033, 366, 2367, 592, 278, 330, 391, 310, 920, 372, 1033, 2466, 29973, 319, 1799, 9047, 13566, 29901, 18585, 29889, 450, 6996, 2969, 723, 367, 304, 671, 21531, 20159, 304, 27599, 278, 3829, 310, 278, 341, 1475, 705, 11356, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 910, 1033, 25135, 15783, 278, 3748, 7613, 408, 263, 25002, 2913, 322, 773, 25002, 15939, 1934, 1316, 408, 3632, 327, 2270, 6471, 322, 350, 9890, 3694, 304, 10115, 2472, 1048, 278, 4423, 310, 29086, 373, 278, 7613, 29889, 2398, 29892, 408, 306, 5276, 1434, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 577, 372, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, 3148, 1001, 29901, 2367, 592, 263, 2702, 1342, 319, 1799, 9047, 13566, 29901, 1094, 263, 2702, 1342, 29892, 7755, 591, 505, 263, 341, 1475, 705, 11356, 3748, 7613, 411, 278, 1494, 5285, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 797, 445, 1206, 29892, 278, 3748, 7613, 508, 367, 9875, 408, 263, 25002, 2913, 29892, 988, 1269, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29889, 450, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 5293, 21531, 20159, 29892, 591, 508, 27599, 278, 3829, 310, 445, 2913, 322, 8161, 278, 14354, 310, 278, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 13, 13, 2831, 2777, 29892, 697, 982, 304, 437, 445, 338, 304, 10272, 278, 3632, 327, 2270, 6471, 310, 278, 2913, 29889, 15089, 327, 2270, 6471, 526, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 29892, 322, 896, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 512, 278, 1206, 310, 278, 7613, 2038, 29892, 591, 508, 10272, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 29892, 607, 16612, 278, 1353, 322, 376, 12181, 29908, 310, 278, 26532, 297, 278, 2913, 29889, 512, 445, 1206, 29892, 278, 937, 3632, 327, 2270, 2318, 723, 2649, 502, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29889, 13, 13, 29933, 1463, 373, 445, 2472, 29892, 591, 508, 10115, 393, 278, 29086, 297, 278, 3748, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29892, 408, 4318, 2400, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 341, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 341, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1342, 310, 920, 21531, 20159, 1033, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 526, 1784, 916, 1950, 13501, 29892, 322, 278, 2702, 4902, 310, 920, 304, 2334, 963, 723, 8839, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 1094, 306, 5276, 1434, 29892, 16049, 263, 1650, 763, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 10241, 474, 471, 4856, 411, 263, 6483, 8004, 310, 1716, 29892, 1033, 366, 5649, 278, 1021, 6964, 304, 592, 411, 393, 11833, 29973, 319, 1799, 9047, 13566, 29901, 18585, 29889, 17090, 366, 505, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 1244, 338, 920, 366, 1795, 671, 21531, 20159, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 4803, 25002, 15939, 1934, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1670, 526, 1784, 1950, 25002, 15939, 1934, 393, 1033, 367, 1304, 363, 445, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29941, 29889, 4803, 278, 2472, 10115, 1127, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 21531, 20159, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 920, 723, 474, 437, 372, 411, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 29973, 319, 1799, 9047, 13566, 29901, 1763, 671, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29892, 366, 723, 1101, 278, 1021, 6996, 6576, 408, 5439, 2038, 29892, 541, 411, 777, 12651, 297, 278, 2702, 4902, 29889, 13, 13, 2831, 2777, 29892, 1244, 338, 920, 366, 1795, 671, 28152, 3632, 3002, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 11796, 29872, 278, 28152, 3632, 3002, 310, 278, 2913, 29889, 9034, 9696, 3632, 3002, 338, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 975, 931, 29892, 322, 372, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 13, 29941, 29889, 4803, 278, 2472, 515, 278, 28152, 3632, 3002, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 28152, 3632, 3002, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 2702, 4902, 310, 278, 28152, 3632, 3002, 16287, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 28152, 3632, 3002, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, 3148, 1001, 29901, 920, 1033, 474, 2334, 445, 297, 3017, 29973, 319, 1799, 9047, 13566, 29901, 1763, 2334, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29892, 366, 723, 817, 304, 437, 278, 1494, 29901, 13, 13, 29896, 29889, 16052, 263, 5132, 3577, 363, 21531, 20159, 29889, 1670, 526, 3196, 3987, 3625, 29892, 1316, 408, 402, 566, 2918, 29892, 360, 291, 952, 375, 29892, 470, 4560, 7354, 29899, 29873, 1388, 29889, 4525, 9741, 3867, 14009, 322, 848, 12286, 363, 20602, 25002, 15939, 1934, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29906, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 910, 1033, 367, 2309, 773, 263, 848, 3829, 4944, 491, 278, 21531, 20159, 3577, 29892, 1316, 408, 263, 3053, 506, 616, 4280, 470, 263, 478, 2035, 29367, 29899, 29934, 4512, 4280, 29889, 7806, 6862, 373, 278, 7613, 723, 3928, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 723, 367, 9875, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29889, 13, 29941, 29889, 11796, 29872, 278, 25002, 15939, 1934, 310, 278, 2913, 29889, 910, 1033, 367, 2309, 773, 14009, 4944, 491, 278, 21531, 20159, 3577, 29889, 1152, 1342, 29892, 366, 1033, 10272, 278, 28152, 3632, 3002, 310, 278, 2913, 773, 278, 28152, 3632, 3002, 5687, 29889, 13, 29946, 29889, 4803, 278, 2472, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 910, 1033, 367, 2309, 773, 263, 10296, 310, 19475, 24481, 322, 8720, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 366, 1033, 671, 263, 8424, 310, 775, 304, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29945, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 1033, 671, 263, 8424, 310, 775, 304, 6336, 2828, 373, 278, 9109, 25256, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 16049, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 4902, 310, 278, 5314, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 304, 679, 4687, 411, 1316, 263, 2060, 29889, 2], "attention_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 739, 29915, 29879, 1950, 304, 671, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29892, 541, 372, 723, 5517, 367, 3755, 4280, 29889, 838, 5869, 293, 20159, 338, 263, 5443, 310, 23964, 393, 11898, 278, 4426, 310, 8162, 393, 526, 21634, 1090, 9126, 316, 689, 800, 29892, 1316, 408, 16116, 292, 322, 289, 2548, 29889, 512, 278, 3030, 310, 341, 1475, 705, 11356, 29892, 445, 1033, 367, 1304, 304, 27599, 278, 3829, 310, 278, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 2398, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 739, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 18585, 29889, 450, 6996, 2969, 723, 367, 304, 671, 21531, 20159, 304, 27599, 278, 3829, 310, 278, 341, 1475, 705, 11356, 3748, 7613, 322, 8161, 278, 14354, 310, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 910, 1033, 25135, 15783, 278, 3748, 7613, 408, 263, 25002, 2913, 322, 773, 25002, 15939, 1934, 1316, 408, 3632, 327, 2270, 6471, 322, 350, 9890, 3694, 304, 10115, 2472, 1048, 278, 4423, 310, 29086, 373, 278, 7613, 29889, 2398, 29892, 408, 306, 5276, 1434, 29892, 16049, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 577, 372, 29915, 29879, 451, 1554, 393, 508, 367, 10824, 297, 263, 2560, 1234, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1094, 263, 2702, 1342, 29892, 7755, 591, 505, 263, 341, 1475, 705, 11356, 3748, 7613, 411, 278, 1494, 5285, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 797, 445, 1206, 29892, 278, 3748, 7613, 508, 367, 9875, 408, 263, 25002, 2913, 29892, 988, 1269, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29889, 450, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 5293, 21531, 20159, 29892, 591, 508, 27599, 278, 3829, 310, 445, 2913, 322, 8161, 278, 14354, 310, 278, 29086, 2729, 373, 3058, 25002, 15939, 1934, 29889, 13, 13, 2831, 2777, 29892, 697, 982, 304, 437, 445, 338, 304, 10272, 278, 3632, 327, 2270, 6471, 310, 278, 2913, 29889, 15089, 327, 2270, 6471, 526, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 29892, 322, 896, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 512, 278, 1206, 310, 278, 7613, 2038, 29892, 591, 508, 10272, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 29892, 607, 16612, 278, 1353, 322, 376, 12181, 29908, 310, 278, 26532, 297, 278, 2913, 29889, 512, 445, 1206, 29892, 278, 937, 3632, 327, 2270, 2318, 723, 2649, 502, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29889, 13, 13, 29933, 1463, 373, 445, 2472, 29892, 591, 508, 10115, 393, 278, 29086, 297, 278, 3748, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29892, 408, 4318, 2400, 29901, 13, 28956, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 29871, 29896, 29871, 341, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 1577, 259, 29896, 13, 29871, 29896, 29871, 1577, 29871, 1577, 29871, 341, 259, 29896, 13, 29871, 29896, 259, 29896, 259, 29896, 259, 29896, 259, 29896, 13, 28956, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1342, 310, 920, 21531, 20159, 1033, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 526, 1784, 916, 1950, 13501, 29892, 322, 278, 2702, 4902, 310, 920, 304, 2334, 963, 723, 8839, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 1094, 306, 5276, 1434, 29892, 16049, 263, 1650, 763, 445, 723, 1996, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 18585, 29889, 17090, 366, 505, 263, 6483, 8004, 310, 1716, 21531, 20159, 322, 278, 3748, 310, 341, 1475, 705, 11356, 29892, 1244, 338, 920, 366, 1795, 671, 21531, 20159, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 4803, 25002, 15939, 1934, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1670, 526, 1784, 1950, 25002, 15939, 1934, 393, 1033, 367, 1304, 363, 445, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29941, 29889, 4803, 278, 2472, 10115, 1127, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 937, 3632, 327, 2270, 2318, 310, 278, 2913, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 21531, 20159, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 25002, 15939, 1934, 1641, 1304, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 21531, 20159, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1763, 671, 28152, 3632, 3002, 470, 738, 310, 278, 916, 25002, 15939, 1934, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29892, 366, 723, 1101, 278, 1021, 6996, 6576, 408, 5439, 2038, 29892, 541, 411, 777, 12651, 297, 278, 2702, 4902, 29889, 13, 13, 2831, 2777, 29892, 1244, 338, 920, 366, 1795, 671, 28152, 3632, 3002, 304, 4505, 263, 341, 1475, 705, 11356, 3748, 7613, 29901, 13, 13, 29896, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 7806, 6862, 373, 278, 7613, 16161, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 508, 367, 2714, 310, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29892, 607, 526, 3291, 393, 526, 451, 760, 310, 278, 2913, 29889, 13, 29906, 29889, 11796, 29872, 278, 28152, 3632, 3002, 310, 278, 2913, 29889, 9034, 9696, 3632, 3002, 338, 263, 982, 310, 20766, 278, 26532, 297, 263, 2913, 975, 931, 29892, 322, 372, 508, 367, 1304, 304, 10115, 2472, 1048, 278, 14354, 310, 278, 29086, 373, 278, 341, 1475, 705, 11356, 7613, 29889, 13, 29941, 29889, 4803, 278, 2472, 515, 278, 28152, 3632, 3002, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 591, 508, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29946, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 508, 671, 445, 2472, 304, 4772, 963, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 773, 28152, 3632, 3002, 304, 4505, 341, 1475, 705, 11356, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 3748, 7613, 322, 278, 2702, 4902, 310, 278, 28152, 3632, 3002, 16287, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 28152, 3632, 3002, 508, 367, 1304, 304, 4505, 341, 1475, 705, 11356, 29889, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 319, 1799, 9047, 13566, 29901, 1763, 2334, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29892, 366, 723, 817, 304, 437, 278, 1494, 29901, 13, 13, 29896, 29889, 16052, 263, 5132, 3577, 363, 21531, 20159, 29889, 1670, 526, 3196, 3987, 3625, 29892, 1316, 408, 402, 566, 2918, 29892, 360, 291, 952, 375, 29892, 470, 4560, 7354, 29899, 29873, 1388, 29889, 4525, 9741, 3867, 14009, 322, 848, 12286, 363, 20602, 25002, 15939, 1934, 29892, 1316, 408, 3632, 327, 2270, 6471, 29892, 350, 9890, 3694, 29892, 470, 28152, 3632, 3002, 29889, 13, 29906, 29889, 16314, 278, 341, 1475, 705, 11356, 3748, 7613, 408, 263, 25002, 2913, 29889, 910, 1033, 367, 2309, 773, 263, 848, 3829, 4944, 491, 278, 21531, 20159, 3577, 29892, 1316, 408, 263, 3053, 506, 616, 4280, 470, 263, 478, 2035, 29367, 29899, 29934, 4512, 4280, 29889, 7806, 6862, 373, 278, 7613, 723, 3928, 304, 263, 1298, 297, 278, 2913, 29892, 322, 278, 29086, 373, 278, 7613, 723, 367, 9875, 408, 376, 5391, 267, 29908, 297, 278, 2913, 29889, 13, 29941, 29889, 11796, 29872, 278, 25002, 15939, 1934, 310, 278, 2913, 29889, 910, 1033, 367, 2309, 773, 14009, 4944, 491, 278, 21531, 20159, 3577, 29889, 1152, 1342, 29892, 366, 1033, 10272, 278, 28152, 3632, 3002, 310, 278, 2913, 773, 278, 28152, 3632, 3002, 5687, 29889, 13, 29946, 29889, 4803, 278, 2472, 515, 278, 25002, 15939, 1934, 304, 8161, 278, 14354, 310, 278, 29086, 373, 278, 7613, 29889, 910, 1033, 367, 2309, 773, 263, 10296, 310, 19475, 24481, 322, 8720, 29889, 1152, 1342, 29892, 565, 278, 28152, 3632, 3002, 14088, 393, 727, 526, 3023, 26532, 297, 278, 2913, 29892, 21050, 297, 263, 6862, 8267, 29892, 769, 366, 1033, 671, 263, 8424, 310, 775, 304, 10115, 393, 278, 29086, 526, 5982, 297, 278, 3023, 26995, 310, 278, 7613, 29889, 13, 29945, 29889, 4803, 445, 2472, 304, 4505, 278, 341, 1475, 705, 11356, 3748, 29889, 9038, 366, 1073, 278, 14354, 310, 278, 29086, 29892, 366, 1033, 671, 263, 8424, 310, 775, 304, 6336, 2828, 373, 278, 9109, 25256, 322, 2821, 278, 7613, 29889, 13, 13, 2776, 3236, 29892, 445, 338, 925, 697, 1950, 2948, 304, 16049, 263, 341, 1475, 705, 11356, 899, 369, 393, 3913, 21531, 20159, 297, 5132, 29889, 1670, 1122, 367, 916, 5837, 304, 437, 372, 29892, 8679, 373, 278, 2702, 4902, 310, 278, 5314, 29889, 2398, 29892, 445, 881, 2367, 366, 263, 2498, 2969, 310, 920, 304, 679, 4687, 411, 1316, 263, 2060, 29889, 2]}
|
tests/test_dict.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import unittest
|
2 |
|
3 |
import pytest
|
@@ -6,6 +9,10 @@ from axolotl.utils.dict import DictDefault
|
|
6 |
|
7 |
|
8 |
class DictDefaultTest(unittest.TestCase):
|
|
|
|
|
|
|
|
|
9 |
def test_dict_default(self):
|
10 |
cfg = DictDefault(
|
11 |
{
|
@@ -41,7 +48,9 @@ class DictDefaultTest(unittest.TestCase):
|
|
41 |
}
|
42 |
)
|
43 |
|
44 |
-
cfg = cfg | DictDefault(
|
|
|
|
|
45 |
|
46 |
assert (
|
47 |
cfg.key_a.key_b == "value_b"
|
@@ -73,7 +82,7 @@ class DictDefaultTest(unittest.TestCase):
|
|
73 |
AttributeError,
|
74 |
match=r"'NoneType' object has no attribute 'another_random_key'",
|
75 |
):
|
76 |
-
cfg.random_key.another_random_key
|
77 |
|
78 |
def test_dict_shorthand_assignment(self):
|
79 |
"""
|
|
|
1 |
+
"""Module for testing DictDefault class"""
|
2 |
+
|
3 |
+
|
4 |
import unittest
|
5 |
|
6 |
import pytest
|
|
|
9 |
|
10 |
|
11 |
class DictDefaultTest(unittest.TestCase):
|
12 |
+
"""
|
13 |
+
Test DictDefault class
|
14 |
+
"""
|
15 |
+
|
16 |
def test_dict_default(self):
|
17 |
cfg = DictDefault(
|
18 |
{
|
|
|
48 |
}
|
49 |
)
|
50 |
|
51 |
+
cfg = cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
52 |
+
{"key_a": {"key_b": "value_b"}, "key_f": "value_g"}
|
53 |
+
)
|
54 |
|
55 |
assert (
|
56 |
cfg.key_a.key_b == "value_b"
|
|
|
82 |
AttributeError,
|
83 |
match=r"'NoneType' object has no attribute 'another_random_key'",
|
84 |
):
|
85 |
+
cfg.random_key.another_random_key = "value"
|
86 |
|
87 |
def test_dict_shorthand_assignment(self):
|
88 |
"""
|
tests/test_prompt_tokenizers.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import json
|
2 |
import logging
|
3 |
import unittest
|
@@ -12,6 +13,10 @@ logging.basicConfig(level="INFO")
|
|
12 |
|
13 |
|
14 |
class TestPromptTokenizationStrategies(unittest.TestCase):
|
|
|
|
|
|
|
|
|
15 |
def setUp(self) -> None:
|
16 |
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
|
17 |
self.tokenizer.add_special_tokens(
|
@@ -24,10 +29,15 @@ class TestPromptTokenizationStrategies(unittest.TestCase):
|
|
24 |
|
25 |
def test_sharegpt_integration(self):
|
26 |
print(Path(__file__).parent)
|
27 |
-
with open(
|
|
|
|
|
28 |
data = fin.read()
|
29 |
conversation = json.loads(data)
|
30 |
-
with open(
|
|
|
|
|
|
|
31 |
data = fin.read()
|
32 |
tokenized_conversation = json.loads(data)
|
33 |
prompter = ShareGPTPrompter("chat")
|
|
|
1 |
+
"""Module for testing prompt tokenizers."""
|
2 |
import json
|
3 |
import logging
|
4 |
import unittest
|
|
|
13 |
|
14 |
|
15 |
class TestPromptTokenizationStrategies(unittest.TestCase):
|
16 |
+
"""
|
17 |
+
Test class for prompt tokenization strategies.
|
18 |
+
"""
|
19 |
+
|
20 |
def setUp(self) -> None:
|
21 |
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
|
22 |
self.tokenizer.add_special_tokens(
|
|
|
29 |
|
30 |
def test_sharegpt_integration(self):
|
31 |
print(Path(__file__).parent)
|
32 |
+
with open(
|
33 |
+
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
|
34 |
+
) as fin:
|
35 |
data = fin.read()
|
36 |
conversation = json.loads(data)
|
37 |
+
with open(
|
38 |
+
Path(__file__).parent / "fixtures/conversation.tokenized.json",
|
39 |
+
encoding="utf-8",
|
40 |
+
) as fin:
|
41 |
data = fin.read()
|
42 |
tokenized_conversation = json.loads(data)
|
43 |
prompter = ShareGPTPrompter("chat")
|
tests/test_prompters.py
CHANGED
@@ -1,9 +1,15 @@
|
|
|
|
|
|
1 |
import unittest
|
2 |
|
3 |
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
4 |
|
5 |
|
6 |
class AlpacaPrompterTest(unittest.TestCase):
|
|
|
|
|
|
|
|
|
7 |
def test_prompt_style_w_none(self):
|
8 |
prompter = AlpacaPrompter(prompt_style=None)
|
9 |
res = next(prompter.build_prompt("tell me a joke"))
|
@@ -11,8 +17,10 @@ class AlpacaPrompterTest(unittest.TestCase):
|
|
11 |
assert "### Instruction:" in res
|
12 |
|
13 |
def test_prompt_style_w_instruct(self):
|
14 |
-
prompter = AlpacaPrompter(prompt_style=PromptStyle.
|
15 |
-
res = next(
|
|
|
|
|
16 |
assert "Below is an instruction" in res
|
17 |
assert "### Instruction:" in res
|
18 |
assert "### Input:" in res
|
@@ -29,8 +37,10 @@ class AlpacaPrompterTest(unittest.TestCase):
|
|
29 |
assert "ASSISTANT:" not in res
|
30 |
|
31 |
def test_prompt_style_w_chat(self):
|
32 |
-
prompter = AlpacaPrompter(prompt_style=PromptStyle.
|
33 |
-
res = next(
|
|
|
|
|
34 |
assert "Below is an instruction" in res
|
35 |
assert "### Instruction:" not in res
|
36 |
assert "### Input:" not in res
|
@@ -45,5 +55,3 @@ class AlpacaPrompterTest(unittest.TestCase):
|
|
45 |
assert "### Response:" not in res
|
46 |
assert "USER:" in res
|
47 |
assert "ASSISTANT:" in res
|
48 |
-
|
49 |
-
|
|
|
1 |
+
"""Module testing prompters"""
|
2 |
+
|
3 |
import unittest
|
4 |
|
5 |
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
6 |
|
7 |
|
8 |
class AlpacaPrompterTest(unittest.TestCase):
|
9 |
+
"""
|
10 |
+
Test AlpacaPrompter
|
11 |
+
"""
|
12 |
+
|
13 |
def test_prompt_style_w_none(self):
|
14 |
prompter = AlpacaPrompter(prompt_style=None)
|
15 |
res = next(prompter.build_prompt("tell me a joke"))
|
|
|
17 |
assert "### Instruction:" in res
|
18 |
|
19 |
def test_prompt_style_w_instruct(self):
|
20 |
+
prompter = AlpacaPrompter(prompt_style=PromptStyle.INSTRUCT.value)
|
21 |
+
res = next(
|
22 |
+
prompter.build_prompt("tell me a joke about the following", "alpacas")
|
23 |
+
)
|
24 |
assert "Below is an instruction" in res
|
25 |
assert "### Instruction:" in res
|
26 |
assert "### Input:" in res
|
|
|
37 |
assert "ASSISTANT:" not in res
|
38 |
|
39 |
def test_prompt_style_w_chat(self):
|
40 |
+
prompter = AlpacaPrompter(prompt_style=PromptStyle.CHAT.value)
|
41 |
+
res = next(
|
42 |
+
prompter.build_prompt("tell me a joke about the following", "alpacas")
|
43 |
+
)
|
44 |
assert "Below is an instruction" in res
|
45 |
assert "### Instruction:" not in res
|
46 |
assert "### Input:" not in res
|
|
|
55 |
assert "### Response:" not in res
|
56 |
assert "USER:" in res
|
57 |
assert "ASSISTANT:" in res
|
|
|
|
tests/test_validation.py
CHANGED
@@ -1,12 +1,18 @@
|
|
|
|
|
|
1 |
import unittest
|
2 |
|
3 |
import pytest
|
4 |
|
5 |
-
from axolotl.utils.validation import validate_config
|
6 |
from axolotl.utils.dict import DictDefault
|
|
|
7 |
|
8 |
|
9 |
class ValidationTest(unittest.TestCase):
|
|
|
|
|
|
|
|
|
10 |
def test_load_4bit_deprecate(self):
|
11 |
cfg = DictDefault(
|
12 |
{
|
@@ -24,7 +30,7 @@ class ValidationTest(unittest.TestCase):
|
|
24 |
}
|
25 |
)
|
26 |
|
27 |
-
cfg = base_cfg | DictDefault(
|
28 |
{
|
29 |
"load_in_8bit": True,
|
30 |
}
|
@@ -33,7 +39,7 @@ class ValidationTest(unittest.TestCase):
|
|
33 |
with pytest.raises(ValueError, match=r".*8bit.*"):
|
34 |
validate_config(cfg)
|
35 |
|
36 |
-
cfg = base_cfg | DictDefault(
|
37 |
{
|
38 |
"gptq": True,
|
39 |
}
|
@@ -42,7 +48,7 @@ class ValidationTest(unittest.TestCase):
|
|
42 |
with pytest.raises(ValueError, match=r".*gptq.*"):
|
43 |
validate_config(cfg)
|
44 |
|
45 |
-
cfg = base_cfg | DictDefault(
|
46 |
{
|
47 |
"load_in_4bit": False,
|
48 |
}
|
@@ -51,7 +57,7 @@ class ValidationTest(unittest.TestCase):
|
|
51 |
with pytest.raises(ValueError, match=r".*4bit.*"):
|
52 |
validate_config(cfg)
|
53 |
|
54 |
-
cfg = base_cfg | DictDefault(
|
55 |
{
|
56 |
"load_in_4bit": True,
|
57 |
}
|
@@ -67,7 +73,7 @@ class ValidationTest(unittest.TestCase):
|
|
67 |
}
|
68 |
)
|
69 |
|
70 |
-
cfg = base_cfg | DictDefault(
|
71 |
{
|
72 |
"load_in_8bit": True,
|
73 |
}
|
@@ -76,7 +82,7 @@ class ValidationTest(unittest.TestCase):
|
|
76 |
with pytest.raises(ValueError, match=r".*8bit.*"):
|
77 |
validate_config(cfg)
|
78 |
|
79 |
-
cfg = base_cfg | DictDefault(
|
80 |
{
|
81 |
"gptq": True,
|
82 |
}
|
@@ -85,7 +91,7 @@ class ValidationTest(unittest.TestCase):
|
|
85 |
with pytest.raises(ValueError, match=r".*gptq.*"):
|
86 |
validate_config(cfg)
|
87 |
|
88 |
-
cfg = base_cfg | DictDefault(
|
89 |
{
|
90 |
"load_in_4bit": True,
|
91 |
}
|
@@ -111,4 +117,3 @@ class ValidationTest(unittest.TestCase):
|
|
111 |
}
|
112 |
)
|
113 |
validate_config(cfg)
|
114 |
-
|
|
|
1 |
+
"""Module for testing the validation module"""
|
2 |
+
|
3 |
import unittest
|
4 |
|
5 |
import pytest
|
6 |
|
|
|
7 |
from axolotl.utils.dict import DictDefault
|
8 |
+
from axolotl.utils.validation import validate_config
|
9 |
|
10 |
|
11 |
class ValidationTest(unittest.TestCase):
|
12 |
+
"""
|
13 |
+
Test the validation module
|
14 |
+
"""
|
15 |
+
|
16 |
def test_load_4bit_deprecate(self):
|
17 |
cfg = DictDefault(
|
18 |
{
|
|
|
30 |
}
|
31 |
)
|
32 |
|
33 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
34 |
{
|
35 |
"load_in_8bit": True,
|
36 |
}
|
|
|
39 |
with pytest.raises(ValueError, match=r".*8bit.*"):
|
40 |
validate_config(cfg)
|
41 |
|
42 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
43 |
{
|
44 |
"gptq": True,
|
45 |
}
|
|
|
48 |
with pytest.raises(ValueError, match=r".*gptq.*"):
|
49 |
validate_config(cfg)
|
50 |
|
51 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
52 |
{
|
53 |
"load_in_4bit": False,
|
54 |
}
|
|
|
57 |
with pytest.raises(ValueError, match=r".*4bit.*"):
|
58 |
validate_config(cfg)
|
59 |
|
60 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
61 |
{
|
62 |
"load_in_4bit": True,
|
63 |
}
|
|
|
73 |
}
|
74 |
)
|
75 |
|
76 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
77 |
{
|
78 |
"load_in_8bit": True,
|
79 |
}
|
|
|
82 |
with pytest.raises(ValueError, match=r".*8bit.*"):
|
83 |
validate_config(cfg)
|
84 |
|
85 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
86 |
{
|
87 |
"gptq": True,
|
88 |
}
|
|
|
91 |
with pytest.raises(ValueError, match=r".*gptq.*"):
|
92 |
validate_config(cfg)
|
93 |
|
94 |
+
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
|
95 |
{
|
96 |
"load_in_4bit": True,
|
97 |
}
|
|
|
117 |
}
|
118 |
)
|
119 |
validate_config(cfg)
|
|