|
import importlib |
|
import math |
|
import os |
|
import sys |
|
from pathlib import Path |
|
|
|
import bitsandbytes as bnb |
|
import torch.cuda |
|
import transformers |
|
from torch import nn |
|
from torch.optim.lr_scheduler import OneCycleLR |
|
from transformers import EarlyStoppingCallback, Trainer |
|
from transformers.trainer_pt_utils import get_parameter_names |
|
|
|
from axolotl.utils.schedulers import InterpolatingLogScheduler |
|
from axolotl.utils.callbacks import SavePeftModelCallback |
|
|
|
|
|
class OneCycleLRSchedulerTrainer(Trainer): |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None |
|
): |
|
optimizer = self.optimizer if optimizer is None else optimizer |
|
num_warmup_steps = self.args.get_warmup_steps(num_training_steps) |
|
num_training_steps = num_training_steps |
|
pct_start = num_warmup_steps / num_training_steps |
|
|
|
self.lr_scheduler = OneCycleLR( |
|
optimizer, |
|
max_lr=self.args.learning_rate, |
|
total_steps=num_training_steps, |
|
pct_start=pct_start, |
|
div_factor=6, |
|
) |
|
|
|
return self.lr_scheduler |
|
|
|
|
|
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer): |
|
total_num_steps = int( |
|
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) |
|
) |
|
warmup_steps = ( |
|
cfg.warmup_steps |
|
if cfg.warmup_steps is not None |
|
else min(int(0.03 * total_num_steps), 100) |
|
) |
|
logging_steps = ( |
|
cfg.logging_steps |
|
if cfg.logging_steps is not None |
|
else max(min(int(0.005 * total_num_steps), 10), 1) |
|
) |
|
save_steps = cfg.save_steps |
|
eval_steps = cfg.eval_steps |
|
|
|
training_arguments_kwargs = {} |
|
if cfg.bf16 == "full": |
|
training_arguments_kwargs["bf16_full_eval"] = True |
|
else: |
|
training_arguments_kwargs["bf16"] = cfg.bf16 |
|
training_arguments_kwargs["fp16"] = True if cfg.fp16 and not cfg.bf16 else False |
|
training_arguments_kwargs["tf32"] = cfg.tf32 |
|
training_arguments_kwargs["warmup_steps"] = warmup_steps |
|
training_arguments_kwargs["logging_steps"] = logging_steps |
|
if cfg.gradient_checkpointing is not None: |
|
if cfg.gptq: |
|
from alpaca_lora_4bit.gradient_checkpointing import ( |
|
apply_gradient_checkpointing, |
|
) |
|
|
|
gradient_checkpointing_ratio = ( |
|
cfg.gradient_checkpointing_ratio |
|
if cfg.gradient_checkpointing_ratio |
|
else 1.0 |
|
) |
|
apply_gradient_checkpointing( |
|
model, checkpoint_ratio=gradient_checkpointing_ratio |
|
) |
|
else: |
|
training_arguments_kwargs[ |
|
"gradient_checkpointing" |
|
] = cfg.gradient_checkpointing |
|
if cfg.fsdp: |
|
training_arguments_kwargs["fsdp"] = cfg.fsdp |
|
if cfg.fsdp_config: |
|
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config) |
|
|
|
|
|
if ( |
|
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true" |
|
and torch.cuda.device_count() > 1 |
|
): |
|
if cfg.deepspeed: |
|
training_arguments_kwargs["deepspeed"] = cfg.deepspeed |
|
else: |
|
|
|
|
|
training_arguments_kwargs["deepspeed"] = "./ds_config.json" |
|
|
|
training_args = transformers.TrainingArguments( |
|
per_device_train_batch_size=cfg.micro_batch_size, |
|
per_device_eval_batch_size=cfg.eval_batch_size |
|
if cfg.eval_batch_size is not None |
|
else cfg.micro_batch_size, |
|
gradient_accumulation_steps=cfg.gradient_accumulation_steps, |
|
eval_accumulation_steps=cfg.gradient_accumulation_steps, |
|
num_train_epochs=cfg.num_epochs, |
|
learning_rate=cfg.learning_rate, |
|
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no", |
|
save_strategy="steps" if save_steps else "epoch", |
|
eval_steps=eval_steps if cfg.val_set_size > 0 else None, |
|
save_steps=save_steps, |
|
output_dir=cfg.output_dir, |
|
save_total_limit=3, |
|
load_best_model_at_end=True |
|
if cfg.val_set_size > 0 |
|
and save_steps is not None |
|
and save_steps % eval_steps == 0 |
|
and cfg.load_in_8bit is not True |
|
else False, |
|
ddp_find_unused_parameters=False if cfg.ddp else None, |
|
group_by_length=cfg.group_by_length, |
|
report_to="wandb" if cfg.use_wandb else None, |
|
run_name=cfg.wandb_run_id if cfg.use_wandb else None, |
|
optim=cfg.optimizer if cfg.optimizer else "adamw_hf", |
|
lr_scheduler_type=cfg.lr_scheduler |
|
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep") |
|
else "cosine", |
|
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0, |
|
**training_arguments_kwargs, |
|
) |
|
|
|
trainer_kwargs = {} |
|
|
|
if cfg.optimizer == "adamw_anyprecision": |
|
if Path(cfg.torchdistx_path).exists(): |
|
sys.path.append(cfg.torchdistx_path) |
|
importlib.import_module("torchdistx") |
|
if ( |
|
cfg.optimizer == "adamw_bnb_8bit" |
|
and not cfg.gptq |
|
and not "deepspeed" in training_arguments_kwargs |
|
and not cfg.fsdp |
|
): |
|
decay_parameters = get_parameter_names(model, [nn.LayerNorm]) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [ |
|
p |
|
for n, p in model.named_parameters() |
|
if (n in decay_parameters and p.requires_grad) |
|
], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [ |
|
p |
|
for n, p in model.named_parameters() |
|
if (n not in decay_parameters and p.requires_grad) |
|
], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
|
|
optimizer = bnb.optim.Adam8bit( |
|
optimizer_grouped_parameters, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
lr=training_args.learning_rate, |
|
) |
|
|
|
if cfg.lr_scheduler == "one_cycle": |
|
lr_scheduler_kwargs = ( |
|
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {} |
|
) |
|
lr_scheduler = OneCycleLR( |
|
optimizer, |
|
cfg.learning_rate, |
|
total_steps=total_num_steps, |
|
epochs=cfg.num_epochs, |
|
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6, |
|
**lr_scheduler_kwargs, |
|
) |
|
elif cfg.lr_scheduler == "log_sweep": |
|
lr_scheduler = InterpolatingLogScheduler( |
|
optimizer, |
|
cfg.warmup_steps, |
|
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10, |
|
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10, |
|
) |
|
else: |
|
lr_scheduler = transformers.get_cosine_schedule_with_warmup( |
|
optimizer, |
|
training_args.warmup_steps, |
|
total_num_steps, |
|
) |
|
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler) |
|
|
|
callbacks = [] |
|
|
|
if cfg.early_stopping_patience: |
|
early_stop_cb = EarlyStoppingCallback( |
|
cfg.early_stopping_patience, |
|
) |
|
callbacks.append(early_stop_cb) |
|
|
|
if cfg.local_rank == 0 and cfg.adapter in ["lora", "qlora"]: |
|
callbacks.append(SavePeftModelCallback) |
|
|
|
data_collator_kwargs = { |
|
"padding": True, |
|
} |
|
if cfg.collator_pad_to_longest: |
|
data_collator_kwargs["padding"] = "longest" |
|
else: |
|
data_collator_kwargs["pad_to_multiple_of"] = 8 |
|
|
|
trainer_cls = ( |
|
OneCycleLRSchedulerTrainer |
|
if cfg.lr_scheduler == "one_cycle" and cfg.fsdp |
|
else transformers.Trainer |
|
) |
|
trainer = trainer_cls( |
|
model=model, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
args=training_args, |
|
data_collator=transformers.DataCollatorForSeq2Seq( |
|
tokenizer, |
|
return_tensors="pt", |
|
**data_collator_kwargs, |
|
), |
|
callbacks=callbacks, |
|
**trainer_kwargs, |
|
) |
|
|
|
return trainer |
|
|