| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						from typing import Optional, Tuple | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import transformers.models.llama.modeling_llama | 
					
					
						
						| 
							 | 
						from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    import xformers.ops | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    logging.error("xformers not found! Please install it before trying to use it.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def hijack_llama_attention(): | 
					
					
						
						| 
							 | 
						    transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def xformers_forward( | 
					
					
						
						| 
							 | 
						    self, | 
					
					
						
						| 
							 | 
						    hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						    attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						    position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						    output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						    use_cache: bool = False, | 
					
					
						
						| 
							 | 
						    padding_mask: Optional[torch.LongTensor] = None,   | 
					
					
						
						| 
							 | 
						    **kwargs,   | 
					
					
						
						| 
							 | 
						) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not hasattr(self, "pretraining_tp"): | 
					
					
						
						| 
							 | 
						        self.pretraining_tp = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if self.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						        key_value_slicing = ( | 
					
					
						
						| 
							 | 
						            self.num_key_value_heads * self.head_dim | 
					
					
						
						| 
							 | 
						        ) // self.pretraining_tp | 
					
					
						
						| 
							 | 
						        query_slices = self.q_proj.weight.split( | 
					
					
						
						| 
							 | 
						            (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | 
					
					
						
						| 
							 | 
						        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = [ | 
					
					
						
						| 
							 | 
						            F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						        query_states = torch.cat(query_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = [ | 
					
					
						
						| 
							 | 
						            F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						        key_states = torch.cat(key_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        value_states = [ | 
					
					
						
						| 
							 | 
						            F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						        value_states = torch.cat(value_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    query_states = query_states.view( | 
					
					
						
						| 
							 | 
						        bsz, q_len, self.num_heads, self.head_dim | 
					
					
						
						| 
							 | 
						    ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						    key_states = key_states.view( | 
					
					
						
						| 
							 | 
						        bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						    ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						    value_states = value_states.view( | 
					
					
						
						| 
							 | 
						        bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						    ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						    if past_key_value is not None: | 
					
					
						
						| 
							 | 
						        kv_seq_len += past_key_value[0].shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						    query_states, key_states = apply_rotary_pos_emb( | 
					
					
						
						| 
							 | 
						        query_states, key_states, cos, sin, position_ids | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if past_key_value is not None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
					
						
						| 
							 | 
						        value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    past_key_value = (key_states, value_states) if use_cache else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						    value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if output_attentions: | 
					
					
						
						| 
							 | 
						        warnings.warn( | 
					
					
						
						| 
							 | 
						            "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						    key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						    value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = xformers.ops.memory_efficient_attention( | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, attn_bias=None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = xformers.ops.memory_efficient_attention( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attn_bias=xformers.ops.LowerTriangularMask(), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim): | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						            f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if self.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) | 
					
					
						
						| 
							 | 
						        o_proj_slices = self.o_proj.weight.split( | 
					
					
						
						| 
							 | 
						            self.hidden_size // self.pretraining_tp, dim=1 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        attn_output = sum( | 
					
					
						
						| 
							 | 
						            F.linear(attn_output[i], o_proj_slices[i]) | 
					
					
						
						| 
							 | 
						            for i in range(self.pretraining_tp) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return attn_output, None, past_key_value | 
					
					
						
						| 
							 | 
						
 |