winglian's picture
fix steps check for anneal on first cycle (#1316)
2c9c88b unverified
raw
history blame
16.8 kB
"""Implements the ReLoRA training procedure from https://arxiv.org/abs/2307.05695, minus the initial full fine-tune."""
import glob
import json
import logging
import os.path
import shutil
from functools import partial
from pathlib import Path
from typing import Dict, List, Sequence, Union
import bitsandbytes as bnb
import peft
import safetensors.torch as st
import torch
from huggingface_hub import snapshot_download
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.optim.lr_scheduler import LRScheduler
from torch.optim.optimizer import Optimizer
from transformers import (
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import barrier, is_main_process
LOG = logging.getLogger("axolotl.relora")
@torch.no_grad()
def magnitude_pruning_(tensor, prune_ratio):
tensor_magnitude = torch.abs(tensor)
threshold = torch.quantile(
tensor_magnitude.flatten().to(dtype=torch.float32), prune_ratio
).to(dtype=tensor.dtype)
mask = tensor_magnitude > threshold
tensor.mul_(mask.to(dtype=tensor.dtype))
def reset_optimizer(
optimizer: torch.optim.Optimizer,
*,
reset_params: list[str], # where str is the key to a torch.nn.Parameter
optimizer_state_keys: list[str],
prune_ratio: float = 0.9,
):
pruning_fn = partial(magnitude_pruning_, prune_ratio=prune_ratio)
n_zeros = 0
n_total = 0
optimizer_state = optimizer.state
if isinstance(optimizer, ZeroRedundancyOptimizer):
optimizer_state = optimizer.optim.state
for param in reset_params:
param_state = optimizer_state[param]
if len(param_state) == 0: # no state for this param, happens for ZeRo optimizer
continue
for key in optimizer_state_keys:
pruning_fn(
param_state[key]
) # pruning fn has to be inplace to keep the same keys in the dict
n_total += param_state[key].numel()
n_zeros += torch.sum(param_state[key] == 0).item()
_zeroed = n_zeros / (1e-7 + n_total) * 100
LOG.info(f"Percent of optimizer states zeroed: {_zeroed:.2f}")
LOG.info(f"absolute n of optimizer states zeroed: {n_zeros}")
class ReLoRACallback(TrainerCallback):
"""Callback to merge LoRA weights into the base model and save full-weight checkpoints"""
def __init__(self, cfg: DictDefault):
self.relora_steps = cfg.relora_steps
self.cpu_offload = cfg.relora_cpu_offload
self.quantized = cfg.load_in_4bit or cfg.load_in_8bit
self.last_full_model = cfg.base_model
self.resume_from_checkpoint = cfg.resume_from_checkpoint
if not os.path.exists(self.last_full_model):
self.last_full_model = str(Path(snapshot_download(cfg.base_model)))
assert os.path.exists(
self.last_full_model
), "for ReLORA base_model must be a local path"
self.num_lora_restarts = 0
self.need_full_save = False
def on_train_begin(
self,
_args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
if self.resume_from_checkpoint:
weight_path = os.path.join(self.resume_from_checkpoint, "relora")
if not os.path.exists(weight_path):
LOG.warning(
"Resuming ReLoRA from checkpoint, but no full-weight save found"
)
else:
LOG.info(f"Loading adjusted base weights from {weight_path}")
load_weight_checkpoint(model, weight_path)
return control
def on_step_begin(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
optimizer: torch.optim.Optimizer,
**_kwargs,
):
if state.global_step > 0 and state.global_step % self.relora_steps == 0:
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
"relora",
)
if "adam" in args.optim.lower():
optimizer_state_keys = ["exp_avg", "exp_avg_sq"]
else:
raise ValueError(f"Optimizer {args.optim} not supported with ReLoRA")
lora_params = [
n
for n, p in model.named_parameters()
if p.requires_grad and "lora_" in n
]
model.save_pretrained(
os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
"adapter",
),
safe_serialization=True,
)
with torch.no_grad():
merge_and_save(
model,
self.last_full_model,
checkpoint_folder,
reinit=True,
quantized=self.quantized,
actually_save=is_main_process(),
cpu_offload=self.cpu_offload,
)
reset_optimizer(
optimizer,
reset_params=lora_params,
optimizer_state_keys=optimizer_state_keys,
prune_ratio=args.relora_prune_ratio,
)
if self.quantized:
self.last_full_model = checkpoint_folder
self.num_lora_restarts += 1
return control
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
checkpoint_folder = os.path.join(
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}", "relora"
)
if (
state.global_step >= self.relora_steps
and state.global_step % self.relora_steps != 0
):
if self.quantized:
if is_main_process() and self.last_full_model != checkpoint_folder:
# ensure the latest full parameter save is in the latest checkpoint
# folder, so that automatic pruning of checkpoints does not remove it
LOG.info(f"moving last full parameter save to {checkpoint_folder}")
os.makedirs(checkpoint_folder, exist_ok=True)
chunks = glob.glob(
f"{self.last_full_model}/model*.safetensors"
) + glob.glob(f"{self.last_full_model}/model*.index.json")
for path in chunks:
new_path = os.path.abspath(shutil.move(path, checkpoint_folder))
try:
os.symlink(new_path, path)
except OSError:
# probably on windows without permission to symlink
pass
self.last_full_model = checkpoint_folder
else:
model.model.save_pretrained(checkpoint_folder, safe_serialization=True)
return control
def on_log(
self,
_args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
logs: Dict[str, float],
**_kwargs,
):
logs["num_lora_restarts"] = self.num_lora_restarts
return control
def on_train_end(
self,
args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
if self.quantized:
# perform final merge and save
with torch.no_grad():
merge_and_save(
model,
self.last_full_model,
args.output_dir,
reinit=False,
quantized=self.quantized,
actually_save=is_main_process(),
cpu_offload=self.cpu_offload,
)
# no need to save if unquantized, as finetune.py will call merge_and_unload()
return control
class ReLoRAScheduler(LRScheduler):
"""Wraps another scheduler to apply per-lora-restart learning rate warmups."""
def __init__(
self,
optimizer: Optimizer,
inner_schedule: LRScheduler,
relora_steps: int,
warmup_steps: int,
anneal_steps: int = 1,
min_lr_scale: float = 0.001,
) -> None:
self.inner_schedule = inner_schedule
self.relora_steps = relora_steps
self.warmup_steps = warmup_steps
self.anneal_steps = anneal_steps
self.min_lr_scale = min_lr_scale
super().__init__(optimizer, inner_schedule.last_epoch, inner_schedule.verbose)
def get_lr(self) -> float:
self.inner_schedule.last_epoch = self.last_epoch
original = self.inner_schedule.get_lr()
step = self.last_epoch
if step < self.relora_steps - self.warmup_steps:
scale = 1
else:
per_relora_progress = step % self.relora_steps
if per_relora_progress < self.warmup_steps:
cycle_t = min(1.0, (per_relora_progress) / self.warmup_steps)
elif per_relora_progress > (self.relora_steps - self.anneal_steps):
cycle_t = min(
1.0,
(self.relora_steps - per_relora_progress) / self.anneal_steps,
)
else:
cycle_t = 1
scale = cycle_t * (1 - self.min_lr_scale) + self.min_lr_scale
if isinstance(original, Sequence):
return [lr * scale for lr in original]
return original * scale
def sharded_paths(path: str, module_names: List[str]) -> Dict[str, str]:
model_name = "model.safetensors"
if not os.path.exists(str(Path(path) / model_name)) and not os.path.exists(
str(Path(path) / f"{model_name}.index.json")
):
model_name = "pytorch_model.bin"
index_path = str(Path(path) / f"{model_name}.index.json")
if os.path.exists(index_path):
with open(index_path, "r", encoding="utf-8") as file:
data = json.load(file)
return data["weight_map"]
return {(module_name + ".weight"): model_name for module_name in module_names}
def lora_delta_weight(layer: peft.tuners.lora.LoraLayer, device) -> torch.Tensor:
if isinstance(layer, (peft.tuners.lora.Linear8bitLt, peft.tuners.lora.Linear4bit)):
adapter: Union[List[str], str] = layer.active_adapter
if isinstance(adapter, list):
if len(adapter) > 1:
raise ValueError("unhandled relora for multiple adapters")
adapter = adapter[0]
return (
peft.utils.transpose(
layer.lora_B[adapter].weight.detach().to(device)
@ layer.lora_A[adapter].weight.detach().to(device),
getattr(layer, "fan_in_fan_out", False),
)
* layer.scaling[adapter]
)
raise ValueError("unhandled lora layer type")
def find_lora_modules(model: peft.LoraModel) -> Dict[str, peft.tuners.lora.LoraLayer]:
modules: Dict[str, peft.tuners.lora.LoraLayer] = {}
key_list = [key for key, _ in model.model.named_modules() if "lora" not in key]
for key in key_list:
try:
# pylint: disable=protected-access
_parent, target, _target_name = peft.utils._get_submodules(model.model, key)
except AttributeError:
continue
if isinstance(target, peft.tuners.lora.LoraLayer):
modules[key] = target
return modules
def update_weights(
target: peft.tuners.lora.LoraLayer, new_weight: torch.Tensor, reinit: bool, device
):
if reinit:
for adapter_name in target.lora_A:
target.reset_lora_parameters(adapter_name, True)
for adapter_name in target.lora_embedding_A:
target.reset_lora_parameters(adapter_name, True)
if isinstance(target, peft.tuners.lora.Linear4bit):
# This could be faster, but the quantization of Linear4bit weights occurs
# when the module is moved from cpu to gpu. Without meddling *too* deeply in
# PEFT's innards or maintaining a duplicate of that codepath, this is good
# enough for now.
target.weight.quant_state = None
target.weight.data = new_weight.cpu()
target.to(device)
elif isinstance(target, peft.tuners.lora.Linear8bitLt):
target.weight.data = (
bnb.nn.Int8Params(new_weight, requires_grad=False).to(device).data
)
else:
target.weight.data = new_weight.to(device)
def merge_and_save(
model: peft.LoraModel,
model_src: str,
model_dst: str,
reinit: bool = False,
quantized: bool = False,
cpu_offload: bool = False,
actually_save: bool = True,
):
modules = find_lora_modules(model)
if not quantized:
for module_name, target in modules.items():
active_adapter = target.active_adapter
if isinstance(active_adapter, list):
active_adapter = active_adapter[0]
update = target.get_delta_weight(active_adapter).detach()
target.weight.data += update
if reinit:
for adapter_name in target.lora_A:
target.reset_lora_parameters(adapter_name, True)
for adapter_name in target.lora_embedding_A:
target.reset_lora_parameters(adapter_name, True)
return
os.makedirs(model_dst, exist_ok=True)
shard_paths = sharded_paths(model_src, modules.keys())
out_shard_paths = {}
unique_shards = list(set(shard_paths.values()))
for shard_path in unique_shards:
out_tensors = {}
if shard_path.endswith(".safetensors"):
in_tensors = st.load_file(str(Path(model_src) / shard_path))
else:
in_tensors = torch.load(Path(model_src) / shard_path)
if "state_dict" in in_tensors:
in_tensors = in_tensors["state_dict"]
for module_name, target in modules.items():
key = module_name + ".weight"
if key not in shard_paths or shard_paths[key] != shard_path:
continue
orig_weight = in_tensors[key]
old_dev = target.weight.device
math_dev = "cpu" if cpu_offload else old_dev
delta_weight = lora_delta_weight(target, math_dev)
new_weight = orig_weight.to(math_dev) + delta_weight
del delta_weight
if actually_save:
out_tensors[key] = new_weight.half().cpu()
update_weights(target, new_weight, reinit=reinit, device=old_dev)
if actually_save:
out_shard_name = shard_path
if out_shard_name.startswith("pytorch_model"):
out_shard_name = (
out_shard_name.replace("pytorch_model", "model").rstrip(".bin")
+ ".safetensors"
)
for module_name in in_tensors:
if module_name not in out_tensors:
out_tensors[module_name] = in_tensors[module_name].half()
out_shard_paths[module_name] = out_shard_name
shard_fn = str(Path(model_dst) / out_shard_name)
LOG.info(f"saving tensors to {shard_fn}")
st.save_file(out_tensors, shard_fn, metadata={"format": "pt"})
barrier()
del in_tensors
del out_tensors
torch.cuda.empty_cache()
if actually_save and len(unique_shards) > 1:
with open(
str(Path(model_dst, "model.safetensors.index.json")), "w", encoding="utf-8"
) as file:
json.dump({"metadata": {}, "weight_map": out_shard_paths}, file)
def load_weight_checkpoint(model: peft.LoraModel, checkpoint_path: str):
modules = find_lora_modules(model)
shard_paths = sharded_paths(checkpoint_path, modules.keys())
unique_shards = list(set(shard_paths.values()))
for shard_path in unique_shards:
tensors = st.load_file(os.path.join(checkpoint_path, shard_path))
for module_name, target in modules.items():
key = module_name + ".weight"
if key not in shard_paths or shard_paths[key] != shard_path:
continue
new_weight = tensors[key]
update_weights(
target, new_weight, reinit=False, device=target.weight.device
)