|  | """ | 
					
						
						|  | E2E tests for resuming training | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import subprocess | 
					
						
						|  | import unittest | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | from transformers.utils import is_torch_bf16_gpu_available | 
					
						
						|  |  | 
					
						
						|  | from axolotl.cli import load_datasets | 
					
						
						|  | from axolotl.common.cli import TrainerCliArgs | 
					
						
						|  | from axolotl.train import train | 
					
						
						|  | from axolotl.utils.config import normalize_config | 
					
						
						|  | from axolotl.utils.dict import DictDefault | 
					
						
						|  |  | 
					
						
						|  | from .utils import most_recent_subdir, with_temp_dir | 
					
						
						|  |  | 
					
						
						|  | LOG = logging.getLogger("axolotl.tests.e2e") | 
					
						
						|  | os.environ["WANDB_DISABLED"] = "true" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TestResumeLlama(unittest.TestCase): | 
					
						
						|  | """ | 
					
						
						|  | Test case for resuming training of llama models | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_resume_qlora(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "tokenizer_type": "LlamaTokenizer", | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "sample_packing": True, | 
					
						
						|  | "flash_attention": True, | 
					
						
						|  | "load_in_4bit": True, | 
					
						
						|  | "adapter": "qlora", | 
					
						
						|  | "lora_r": 32, | 
					
						
						|  | "lora_alpha": 64, | 
					
						
						|  | "lora_dropout": 0.05, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "val_set_size": 0.1, | 
					
						
						|  | "special_tokens": {}, | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "vicgalle/alpaca-gpt4", | 
					
						
						|  | "type": "alpaca", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 2, | 
					
						
						|  | "micro_batch_size": 1, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "adamw_torch", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "save_total_limit": 5, | 
					
						
						|  | "max_steps": 40, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | if is_torch_bf16_gpu_available(): | 
					
						
						|  | cfg.bf16 = True | 
					
						
						|  | else: | 
					
						
						|  | cfg.fp16 = True | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  |  | 
					
						
						|  | resume_cfg = cfg | DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "resume_from_checkpoint": f"{temp_dir}/checkpoint-30/", | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(resume_cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  |  | 
					
						
						|  | train(cfg=resume_cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "adapter_model.bin").exists() | 
					
						
						|  |  | 
					
						
						|  | tb_log_path_1 = most_recent_subdir(temp_dir + "/runs") | 
					
						
						|  | cmd = f"tensorboard --inspect  --logdir {tb_log_path_1}" | 
					
						
						|  | res = subprocess.run( | 
					
						
						|  | cmd, shell=True, text=True, capture_output=True, check=True | 
					
						
						|  | ) | 
					
						
						|  | pattern = r"first_step\s+(\d+)" | 
					
						
						|  | first_steps = int(re.findall(pattern, res.stdout)[0]) | 
					
						
						|  | assert first_steps == 31 | 
					
						
						|  |  |