qwerrwe / tests /e2e /patched /test_resume.py
winglian's picture
attempt to also run e2e tests that needs gpus (#1070)
788649f unverified
raw
history blame
2.99 kB
"""
E2E tests for resuming training
"""
import logging
import os
import re
import subprocess
import unittest
from pathlib import Path
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from ..utils import most_recent_subdir, with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestResumeLlama(unittest.TestCase):
"""
Test case for resuming training of llama models
"""
@with_temp_dir
def test_resume_qlora_packed(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"sample_packing": True,
"flash_attention": True,
"load_in_4bit": True,
"adapter": "qlora",
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "vicgalle/alpaca-gpt4",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"save_steps": 10,
"save_total_limit": 5,
"max_steps": 40,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
resume_cfg = cfg | DictDefault(
{
"resume_from_checkpoint": f"{temp_dir}/checkpoint-30/",
}
)
normalize_config(resume_cfg)
cli_args = TrainerCliArgs()
train(cfg=resume_cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()
tb_log_path_1 = most_recent_subdir(temp_dir + "/runs")
cmd = f"tensorboard --inspect --logdir {tb_log_path_1}"
res = subprocess.run(
cmd, shell=True, text=True, capture_output=True, check=True
)
pattern = r"first_step\s+(\d+)"
first_steps = int(re.findall(pattern, res.stdout)[0])
assert first_steps == 31