|
"""Module containing prompters""" |
|
|
|
import dataclasses |
|
import logging |
|
from enum import Enum, auto |
|
from typing import Generator, List, Optional, Tuple, Union |
|
|
|
LOG = logging.getLogger("axolotl") |
|
IGNORE_TOKEN_ID = -100 |
|
|
|
|
|
class PromptStyle(Enum): |
|
""" |
|
Enum for prompt styles |
|
""" |
|
|
|
INSTRUCT = "instruct" |
|
CHAT = "chat" |
|
CHATML = "chatml" |
|
|
|
|
|
class AlpacaPrompter: |
|
""" |
|
Base class for alpaca prompters |
|
""" |
|
|
|
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" |
|
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" |
|
system_format: str = "{system}" |
|
turn_format: str |
|
turn_no_input_format: str |
|
prompt_style: Optional[PromptStyle] = None |
|
|
|
def __init__(self, prompt_style=PromptStyle.INSTRUCT.value): |
|
self.prompt_style = prompt_style if prompt_style else PromptStyle.INSTRUCT.value |
|
self.match_prompt_style() |
|
|
|
def match_prompt_style(self): |
|
|
|
if self.prompt_style == PromptStyle.INSTRUCT.value: |
|
self.turn_format = "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
self.turn_no_input_format = ( |
|
"### Instruction:\n{instruction}\n\n### Response:\n" |
|
) |
|
self.system_format = "### System:\n{system}\n\n" |
|
if self.prompt_style == PromptStyle.CHAT.value: |
|
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:" |
|
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:" |
|
self.system_format = "SYSTEM: {system}\n" |
|
if self.prompt_style == PromptStyle.CHATML.value: |
|
self.turn_format = "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n" |
|
self.turn_no_input_format = ( |
|
"<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
self.system_format = "<|im_start|>system\n{system}<|im_end|>\n" |
|
|
|
def build_prompt( |
|
self, |
|
instruction: str, |
|
input: Union[None, str] = None, |
|
output: Union[None, str] = None, |
|
) -> Generator[str, None, None]: |
|
|
|
|
|
if input: |
|
res = ( |
|
self.system_format.format(system=self.system_prompt) |
|
if self.system_prompt |
|
else "" |
|
) + self.turn_format.format(instruction=instruction, input=input) |
|
else: |
|
res = ( |
|
self.system_format.format(system=self.system_no_input_prompt) |
|
if self.system_prompt |
|
else "" |
|
) + self.turn_no_input_format.format(instruction=instruction) |
|
if output: |
|
res = f"{res}{output}" |
|
yield res |
|
|
|
|
|
class UnpromptedPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for alpaca no system prompt |
|
""" |
|
|
|
system_prompt = "" |
|
system_no_input_prompt = "" |
|
|
|
|
|
class JeopardyPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for Jeopardy |
|
""" |
|
|
|
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
|
|
|
|
class MultipleChoiceExplainPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for multiple choice explain |
|
""" |
|
|
|
system_prompt = ( |
|
"Choose the answer that best answers the question. Explain your reasoning.\n" |
|
) |
|
system_no_input_prompt = ( |
|
"Choose the answer that best answers the question. Explain your reasoning.\n" |
|
) |
|
|
|
|
|
class MultipleChoiceConcisePrompter(AlpacaPrompter): |
|
""" |
|
Prompter for multiple choice concise |
|
""" |
|
|
|
system_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n" |
|
system_no_input_prompt = "Choose the answer that best answers the question. Be concise in your response.\n\n" |
|
|
|
def match_prompt_style(self): |
|
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:" |
|
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:" |
|
|
|
|
|
class SummarizeTLDRPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for summarize TLDR |
|
""" |
|
|
|
system_prompt = "" |
|
system_no_input_prompt = "" |
|
|
|
def match_prompt_style(self): |
|
self.turn_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\n{input}\nASSISTANT:" |
|
self.turn_no_input_format = "USER: Summarize the following article as a TL;DR.\n{instruction}\nASSISTANT:" |
|
|
|
|
|
class CompletionPrompter: |
|
""" |
|
Prompter for completion |
|
""" |
|
|
|
def build_prompt( |
|
self, |
|
instruction: str, |
|
input=None, |
|
output=None, |
|
) -> Generator[str, None, None]: |
|
yield instruction |
|
|
|
|
|
class GPTeacherPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for GPTeacher |
|
""" |
|
|
|
|
|
class NomicGPT4AllPrompter(AlpacaPrompter): |
|
""" |
|
Prompter for NomicGPT4All |
|
""" |
|
|
|
|
|
class ReflectAlpacaPrompter: |
|
""" |
|
Prompter for ReflectAlpaca |
|
""" |
|
|
|
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n" |
|
system_no_input_prompt = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n" |
|
|
|
prompt_input = ( |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
) |
|
prompt_no_input = "### Instruction:\n{instruction}\n\n### Response:\n" |
|
agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}" |
|
response_split = "### Response:" |
|
|
|
def __init__(self, prompt_style="instruct"): |
|
self.prompt_style = prompt_style |
|
self.match_prompt_style() |
|
|
|
def match_prompt_style(self): |
|
if self.prompt_style == PromptStyle.INSTRUCT.value: |
|
self.prompt_input = ( |
|
self.system_prompt |
|
+ "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
) |
|
self.prompt_no_input = ( |
|
self.system_no_input_prompt |
|
+ "### Instruction:\n{instruction}\n\n### Response:\n" |
|
) |
|
self.agent_label = "### Thought:\n{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}" |
|
self.response_split = "### Final Response:" |
|
if self.prompt_style == PromptStyle.CHAT.value: |
|
self.prompt_input = ( |
|
self.system_prompt + "USER: {instruction}\n{input}\nASSISTANT:" |
|
) |
|
self.prompt_no_input = ( |
|
self.system_no_input_prompt + "USER: {instruction}\nASSISTANT:" |
|
) |
|
self.agent_label = ( |
|
"\nTHOUGHT: {output}\nASSISTANT REFLECTION: {reflection}\nASSISTANT:" |
|
) |
|
self.response_split = "ASSISTANT:" |
|
|
|
def build_prompt( |
|
self, |
|
instruction: str, |
|
input: Union[None, str] = None, |
|
output: Union[None, str] = None, |
|
reflection: Union[None, str] = None, |
|
corrected: Union[None, str] = None, |
|
) -> Generator[str, None, None]: |
|
|
|
|
|
if input: |
|
res = self.prompt_input.format(instruction=instruction, input=input) |
|
else: |
|
res = self.prompt_no_input.format(instruction=instruction) |
|
if output and reflection and corrected: |
|
label = self.agent_label.format( |
|
output=output, |
|
reflection=reflection, |
|
corrected=corrected, |
|
) |
|
res = f"{res}{label}" |
|
yield res |
|
|
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
|
|
SINGLE = auto() |
|
TWO = auto() |
|
DOLLY = auto() |
|
|
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
|
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "###" |
|
sep2: Optional[str] = None |
|
|
|
def get_prompt(self) -> Generator[Tuple[str, str], None, None]: |
|
|
|
preamble = self.system + self.sep |
|
yield ("SYSTEM:", preamble) |
|
for _, (role, message) in enumerate(self.messages): |
|
if message: |
|
yield (role + ":", " " + message) |
|
else: |
|
LOG.warning(f"role with empty message: {role}") |
|
yield (role + ":", "") |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2, |
|
) |
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
|
|
SHAREGPT_ASSERTION_FAILED_ROLE = ( |
|
"Role did not alternate between turns (gpt and human). Please check your data." |
|
) |
|
|
|
|
|
class ShareGPTPrompter: |
|
""" |
|
A prompter that generates prompts for the ShareGPT |
|
""" |
|
|
|
def __init__(self, prompt_style=None, system_prompt: Optional[str] = None): |
|
if prompt_style != PromptStyle.CHAT.value: |
|
raise ValueError( |
|
f"unsupported prompt_style for ShareGPTPrompter({prompt_style})" |
|
) |
|
system: str = ( |
|
system_prompt |
|
if system_prompt |
|
else ( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
) |
|
) |
|
self._conversation = Conversation( |
|
system=system, |
|
roles=["USER", "ASSISTANT"], |
|
messages=[], |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2=" ", |
|
) |
|
|
|
def build_prompt(self, source) -> Generator[str, None, None]: |
|
|
|
if source[0]["from"] == "system": |
|
source.pop(0) |
|
|
|
if len(source) < 2: |
|
|
|
|
|
raise IndexError( |
|
f"A conversation entry has less than 2 messages :\n{source}" |
|
) |
|
|
|
conv = self._conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
try: |
|
|
|
if ( |
|
source[0]["from"] not in roles |
|
or roles[source[0]["from"]] != conv.roles[0] |
|
): |
|
|
|
source = source[1:] |
|
except IndexError as err: |
|
|
|
raise err |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], SHAREGPT_ASSERTION_FAILED_ROLE |
|
conv.append_message(role, sentence["value"]) |
|
|
|
for part in conv.get_prompt(): |
|
yield part |
|
|