|
"""Callbacks for Trainer class""" |
|
|
|
from __future__ import annotations |
|
|
|
import logging |
|
import os |
|
from shutil import copyfile |
|
from tempfile import NamedTemporaryFile |
|
from typing import TYPE_CHECKING, Dict, List |
|
|
|
import evaluate |
|
import mlflow |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.distributed as dist |
|
import wandb |
|
from datasets import load_dataset |
|
from optimum.bettertransformer import BetterTransformer |
|
from tqdm import tqdm |
|
from transformers import ( |
|
GenerationConfig, |
|
Trainer, |
|
TrainerCallback, |
|
TrainerControl, |
|
TrainerState, |
|
TrainingArguments, |
|
) |
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy |
|
|
|
from axolotl.utils.bench import log_gpu_memory_usage |
|
from axolotl.utils.distributed import ( |
|
barrier, |
|
broadcast_dict, |
|
gather_scalar_from_all_ranks, |
|
get_world_size, |
|
is_distributed, |
|
is_main_process, |
|
zero_first, |
|
) |
|
|
|
if TYPE_CHECKING: |
|
from axolotl.core.trainer_builder import AxolotlTrainingArguments |
|
|
|
LOG = logging.getLogger("axolotl.callbacks") |
|
IGNORE_INDEX = -100 |
|
|
|
|
|
class EvalFirstStepCallback( |
|
TrainerCallback |
|
): |
|
""" |
|
Callback to trigger evals on the first step |
|
""" |
|
|
|
def on_step_end( |
|
self, |
|
args: TrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**kwargs, |
|
): |
|
if ( |
|
args.evaluation_strategy == IntervalStrategy.STEPS |
|
and state.global_step == 1 |
|
): |
|
control.should_evaluate = True |
|
return control |
|
|
|
|
|
class SaveBetterTransformerModelCallback( |
|
TrainerCallback |
|
): |
|
"""Callback to save the BetterTransformer wrapped model""" |
|
|
|
def on_step_end( |
|
self, |
|
args: TrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**kwargs, |
|
): |
|
|
|
if ( |
|
args.save_strategy == IntervalStrategy.STEPS |
|
and args.save_steps > 0 |
|
and state.global_step % args.save_steps == 0 |
|
): |
|
control.should_save = True |
|
|
|
if control.should_save: |
|
checkpoint_folder = os.path.join( |
|
args.output_dir, |
|
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}", |
|
) |
|
|
|
model = BetterTransformer.reverse(kwargs["model"]) |
|
model.save_pretrained(checkpoint_folder) |
|
|
|
|
|
|
|
|
|
control.should_save = False |
|
return control |
|
|
|
|
|
class GPUStatsCallback( |
|
TrainerCallback |
|
): |
|
"""Callback to track GPU utilization""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
self.logged = False |
|
|
|
def on_step_end( |
|
self, |
|
args: TrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**kwargs, |
|
): |
|
if not self.logged and state.global_step > 1: |
|
log_gpu_memory_usage(LOG, "while training", self.cfg.device) |
|
self.logged = True |
|
return control |
|
|
|
|
|
class LossWatchDogCallback(TrainerCallback): |
|
"""Callback to track loss and stop training if loss is too high""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
self.logged = False |
|
self.violations = 0 |
|
self.threshold = cfg.loss_watchdog_threshold |
|
self.patience = cfg.loss_watchdog_patience or 3 |
|
|
|
def on_step_end( |
|
self, |
|
_args: TrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**_kwargs, |
|
): |
|
if len(state.log_history) > 0 and "loss" in state.log_history[-1]: |
|
if state.log_history[-1]["loss"] > self.threshold: |
|
self.violations += 1 |
|
if self.violations >= self.patience: |
|
LOG.warning( |
|
"Loss is too high, stopping training (loss_watchdog_threshold)" |
|
) |
|
control.should_training_stop = True |
|
else: |
|
self.violations = 0 |
|
return control |
|
|
|
|
|
def bench_eval_callback_factory(trainer, tokenizer): |
|
accuracy = evaluate.load("accuracy") |
|
abcd_idx = [ |
|
tokenizer("A", add_special_tokens=False).input_ids[0], |
|
tokenizer("B", add_special_tokens=False).input_ids[0], |
|
tokenizer("C", add_special_tokens=False).input_ids[0], |
|
tokenizer("D", add_special_tokens=False).input_ids[0], |
|
tokenizer("E", add_special_tokens=False).input_ids[0], |
|
tokenizer("F", add_special_tokens=False).input_ids[0], |
|
tokenizer("G", add_special_tokens=False).input_ids[0], |
|
] |
|
bench_split = "eval" |
|
|
|
def transform_bench_subject(example): |
|
|
|
parts = example["subject"].split(":") |
|
first_part = ( |
|
parts[0].strip().lower().replace("-", "_") |
|
) |
|
second_part = ( |
|
parts[1].strip().replace("-", "_") if len(parts) > 1 else "all" |
|
) |
|
|
|
|
|
return {"name": first_part, "subject": second_part} |
|
|
|
if trainer.args.bench_dataset == "mmlu-zs": |
|
bench_dataset = load_dataset( |
|
"openaccess-ai-collective/mmlu-evals", |
|
data_files={ |
|
"eval": "zero_shot_mmlu_val.json", |
|
"test": "zero_shot_mmlu_test.json", |
|
}, |
|
) |
|
|
|
|
|
elif trainer.args.bench_dataset in ["mmlu", "mmlu-fs"]: |
|
bench_dataset = load_dataset( |
|
"openaccess-ai-collective/mmlu-evals", |
|
data_files={ |
|
"eval": "five_shot_mmlu_val.json", |
|
"test": "five_shot_mmlu_test.json", |
|
}, |
|
) |
|
|
|
elif "/" in trainer.args.bench_dataset: |
|
bench_ds = trainer.args.bench_dataset |
|
bench_ds_name = "/".join(bench_ds.split("/", 2)[:2]) |
|
bench_ds_data_file = "/".join(bench_ds.split("/", 2)[2:]) |
|
bench_dataset = load_dataset( |
|
bench_ds_name, |
|
data_files={ |
|
"eval": bench_ds_data_file, |
|
}, |
|
) |
|
bench_dataset["eval"] = bench_dataset["eval"].map(transform_bench_subject) |
|
else: |
|
raise ValueError( |
|
f"unhandled value `{trainer.args.bench_dataset}` for bench_dataset training args" |
|
) |
|
bench_dataset = bench_dataset[trainer.args.bench_split] |
|
if trainer.args.max_bench_samples is not None: |
|
bench_dataset = bench_dataset.select(range(trainer.args.max_bench_samples)) |
|
|
|
def tokenize_evals(example): |
|
source = f"{tokenizer.bos_token}{example['input']}" |
|
target = f"{example['output']}{tokenizer.eos_token}" |
|
|
|
tokenized_source = tokenizer( |
|
source, |
|
max_length=2048, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
tokenized_target = tokenizer( |
|
target, |
|
max_length=2048, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
input_ids = tokenized_source["input_ids"] + tokenized_target["input_ids"] |
|
labels = [IGNORE_INDEX] * len(tokenized_source["input_ids"]) + tokenized_target[ |
|
"input_ids" |
|
] |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"labels": labels, |
|
"subject": example["subject"], |
|
} |
|
|
|
with zero_first(is_main_process()): |
|
bench_dataset = bench_dataset.map(tokenize_evals) |
|
bench_dataset = bench_dataset.filter(lambda x: x["labels"][-2] in abcd_idx) |
|
|
|
class BenchEvalCallback(TrainerCallback): |
|
""" |
|
TrainerCallback that runs the MMLU evals |
|
""" |
|
|
|
def on_evaluate( |
|
self, |
|
args: AxolotlTrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
metrics: Dict[str, float], |
|
**kwargs, |
|
): |
|
data_loader = trainer.get_bench_dataloader( |
|
bench_dataset.remove_columns(["input", "subject", "output", "name"]) |
|
) |
|
trainer.model.eval() |
|
preds, refs = [], [] |
|
loss_bench = 0 |
|
for batch in tqdm(data_loader, total=len(data_loader)): |
|
(loss, logits, labels) = trainer.prediction_step( |
|
trainer.model, |
|
batch, |
|
prediction_loss_only=False, |
|
) |
|
|
|
for i, logit in enumerate(logits): |
|
label_non_zero_id = (batch["labels"][i] != IGNORE_INDEX).nonzero()[ |
|
0 |
|
][0] |
|
logit_abcd = logit[label_non_zero_id - 1][abcd_idx] |
|
preds.append(torch.argmax(logit_abcd).item()) |
|
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:, 0] |
|
refs += [ |
|
abcd_idx.index(label) if label in abcd_idx else -1 |
|
for label in labels.tolist() |
|
] |
|
loss_bench += loss.item() |
|
|
|
bench_name = bench_dataset["name"] |
|
bench_names: dict = {s: {"refs": [], "preds": []} for s in set(bench_name)} |
|
for s, p, r in zip(bench_name, preds, refs): |
|
bench_names[s]["preds"].append(p) |
|
bench_names[s]["refs"].append(r) |
|
barrier() |
|
local_bench_names = bench_names |
|
gathered_bench_names: List[Dict] = [{} for _ in range(get_world_size())] |
|
|
|
|
|
loss_bench_ranks = gather_scalar_from_all_ranks( |
|
lambda: loss_bench, get_world_size() |
|
) |
|
len_data_loader_ranks = gather_scalar_from_all_ranks( |
|
lambda: len(data_loader), get_world_size() |
|
) |
|
|
|
results = {} |
|
if is_distributed() and not is_main_process(): |
|
dist.gather_object(local_bench_names, dst=0) |
|
else: |
|
if is_distributed(): |
|
dist.gather_object(local_bench_names, gathered_bench_names, dst=0) |
|
else: |
|
gathered_bench_names = [local_bench_names] |
|
bench_loss = sum(loss_bench_ranks) / sum(len_data_loader_ranks) |
|
results = {f"{bench_split}_bench_loss": bench_loss} |
|
|
|
|
|
combined_bench_names: Dict[str, Dict[str, List]] = {} |
|
for bench_name in gathered_bench_names: |
|
for name, data in bench_name.items(): |
|
if name not in combined_bench_names: |
|
combined_bench_names[name] = {"refs": [], "preds": []} |
|
combined_bench_names[name]["refs"].extend(data["refs"]) |
|
combined_bench_names[name]["preds"].extend(data["preds"]) |
|
|
|
bench_scores = [] |
|
bench_refs = [] |
|
bench_preds = [] |
|
for ( |
|
bench_name |
|
) in combined_bench_names: |
|
bench_score = accuracy.compute( |
|
references=combined_bench_names[bench_name]["refs"], |
|
predictions=combined_bench_names[bench_name]["preds"], |
|
)["accuracy"] |
|
bench_refs.extend(combined_bench_names[bench_name]["refs"]) |
|
bench_preds.extend(combined_bench_names[bench_name]["preds"]) |
|
if not pd.isna(bench_score): |
|
results[ |
|
f"{bench_split}_bench_accuracy_{bench_name}" |
|
] = bench_score |
|
bench_scores.append(bench_score) |
|
else: |
|
results[f"{bench_split}_bench_accuracy_{bench_name}"] = 0.0 |
|
bench_scores.append(0.0) |
|
results[f"{bench_split}_bench_average_accuracy"] = np.mean(bench_scores) |
|
results[f"{bench_split}_bench_total_accuracy"] = accuracy.compute( |
|
references=bench_refs, predictions=bench_preds |
|
)["accuracy"] |
|
trainer.log(results) |
|
|
|
results = broadcast_dict(results) |
|
for key, val in results.items(): |
|
metrics[key] = val |
|
|
|
return BenchEvalCallback |
|
|
|
|
|
def causal_lm_bench_eval_callback_factory(trainer: Trainer, tokenizer): |
|
class CausalLMBenchEvalCallback(TrainerCallback): |
|
"""Callback to log prediction values during each evaluation""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
self.logged = False |
|
self.metrics = self.__maybe_load_metrics() |
|
|
|
def __maybe_load_metrics(self): |
|
metrics = {} |
|
for metric in self.cfg.eval_causal_lm_metrics: |
|
try: |
|
metrics[metric] = evaluate.load(metric) |
|
except Exception as exc: |
|
LOG.warning(f"{metric}: {exc.args}") |
|
return metrics |
|
|
|
def on_evaluate( |
|
self, |
|
args: AxolotlTrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
train_dataloader, |
|
eval_dataloader, |
|
**kwargs, |
|
): |
|
trainer.model.eval() |
|
device = torch.device(self.cfg.device) |
|
|
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=self.cfg.eval_max_new_tokens, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
|
|
def find_ranges(lst): |
|
ranges = [] |
|
start = 0 |
|
for i in range(1, len(lst)): |
|
if lst[i] == 0: |
|
ranges.append((start, i - 1)) |
|
start = i |
|
end = len(lst) - 1 |
|
ranges.append((start, end)) |
|
return ranges |
|
|
|
def compute(metric: evaluate.Metric, **kwargs): |
|
|
|
metric_score = None |
|
try: |
|
metric_score = metric.compute(**kwargs) |
|
return ( |
|
metric_score["score"] |
|
if "score" in metric_score |
|
else metric_score["mean_score"] |
|
) |
|
except Exception: |
|
LOG.debug( |
|
f"Failed to compute metric {metric.name} with kwargs {kwargs.keys()}" |
|
) |
|
return metric_score |
|
|
|
def evaluate_preds(sources, predictions, references): |
|
scores = {} |
|
|
|
for metric_name, metric in self.metrics.items(): |
|
score = compute( |
|
metric, |
|
references=references, |
|
predictions=predictions, |
|
sources=sources, |
|
) |
|
score = score or compute( |
|
metric, |
|
references=[[r] for r in references], |
|
predictions=predictions, |
|
) |
|
scores[metric_name] = score |
|
return scores |
|
|
|
def predict_with_generate(): |
|
eval_src, eval_pred, eval_ref = [], [], [] |
|
|
|
for batch in tqdm(eval_dataloader): |
|
batch_labels = batch["labels"].to(device) |
|
batch_input_ids = batch["input_ids"].to(device) |
|
|
|
if "position_ids" in batch: |
|
batch_pos_ids = batch["position_ids"].tolist() |
|
else: |
|
batch_pos_ids = [None] * len(batch["input_ids"]) |
|
|
|
prompt_token_ids_list = [] |
|
completion_token_ids_list = [] |
|
|
|
for input_ids_all, labels_all, pos_ids in zip( |
|
batch_input_ids, |
|
batch_labels, |
|
batch_pos_ids, |
|
): |
|
if pos_ids is None: |
|
pos_ranges = [(0, len(input_ids_all) - 1)] |
|
else: |
|
pos_ranges = find_ranges(pos_ids) |
|
|
|
for pos_range in pos_ranges: |
|
start, end = pos_range |
|
if start == end: |
|
continue |
|
|
|
input_ids = input_ids_all[start : end + 1] |
|
labels = labels_all[start : end + 1] |
|
|
|
tokens_without_loss = labels == IGNORE_INDEX |
|
tokens_with_loss = labels != IGNORE_INDEX |
|
tokens_exclude_padding = input_ids != tokenizer.pad_token_id |
|
prompt_token_includes = ( |
|
tokens_without_loss & tokens_exclude_padding |
|
) |
|
|
|
prompt_token_ids = input_ids[prompt_token_includes] |
|
prompt_token_ids_list.append(prompt_token_ids) |
|
|
|
completion_token_ids = input_ids[tokens_with_loss] |
|
completion_token_ids_list.append(completion_token_ids) |
|
|
|
prompt_texts = tokenizer.batch_decode( |
|
prompt_token_ids_list, skip_special_tokens=True |
|
) |
|
completion_texts = tokenizer.batch_decode( |
|
completion_token_ids_list, skip_special_tokens=True |
|
) |
|
|
|
with torch.no_grad(): |
|
prompt_encoding = tokenizer( |
|
prompt_texts, padding=True, return_tensors="pt" |
|
).to(self.cfg.device) |
|
predictions = trainer.model.generate( |
|
**prompt_encoding, generation_config=generation_config |
|
) |
|
|
|
prediction_all_tokens = predictions["sequences"].cpu().tolist() |
|
prediction_without_prompt_tokens_list = [] |
|
for prompt_token_ids, prediction_tokens in zip( |
|
prompt_token_ids_list, prediction_all_tokens |
|
): |
|
prediction_without_prompt_tokens = prediction_tokens[ |
|
len(prompt_token_ids) : |
|
] |
|
prediction_without_prompt_tokens_list.append( |
|
prediction_without_prompt_tokens |
|
) |
|
|
|
predicted_texts = tokenizer.batch_decode( |
|
prediction_without_prompt_tokens_list, skip_special_tokens=True |
|
) |
|
|
|
eval_src.extend(prompt_texts) |
|
eval_pred.extend(predicted_texts) |
|
eval_ref.extend(completion_texts) |
|
|
|
return eval_src, eval_pred, eval_ref |
|
|
|
if is_main_process(): |
|
eval_preds = predict_with_generate() |
|
trainer.log(evaluate_preds(*eval_preds)) |
|
|
|
return control |
|
|
|
return CausalLMBenchEvalCallback |
|
|
|
|
|
def log_prediction_callback_factory(trainer: Trainer, tokenizer): |
|
class LogPredictionCallback(TrainerCallback): |
|
"""Callback to log prediction values during each evaluation""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
self.logged = False |
|
|
|
def on_evaluate( |
|
self, |
|
args: AxolotlTrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
train_dataloader, |
|
eval_dataloader, |
|
**kwargs, |
|
): |
|
eval_table_size = self.cfg.eval_table_size |
|
|
|
if eval_table_size <= 0: |
|
return control |
|
|
|
trainer.model.eval() |
|
device = torch.device(self.cfg.device) |
|
|
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=self.cfg.eval_max_new_tokens, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
|
|
def logits_to_tokens(logits) -> torch.Tensor: |
|
probabilities = torch.softmax(logits, dim=-1) |
|
|
|
predicted_token_ids = torch.argmax(probabilities, dim=-1) |
|
return predicted_token_ids |
|
|
|
def find_ranges(lst): |
|
ranges = [] |
|
start = 0 |
|
for i in range(1, len(lst)): |
|
if lst[i] == 0: |
|
ranges.append((start, i - 1)) |
|
start = i |
|
end = len(lst) - 1 |
|
ranges.append((start, end)) |
|
return ranges |
|
|
|
def log_table_from_dataloader(name: str, table_dataloader): |
|
table = wandb.Table( |
|
columns=[ |
|
"id", |
|
"Prompt", |
|
"Correct Completion", |
|
"Predicted Completion (model.generate)", |
|
"Predicted Completion (trainer.prediction_step)", |
|
] |
|
) |
|
row_index = 0 |
|
|
|
for batch in tqdm(table_dataloader): |
|
if row_index > eval_table_size: |
|
break |
|
|
|
batch_labels = batch["labels"].to(device) |
|
batch_input_ids = batch["input_ids"].to(device) |
|
|
|
if "position_ids" in batch: |
|
batch_pos_ids = batch["position_ids"].tolist() |
|
else: |
|
batch_pos_ids = [None] * len(batch["input_ids"]) |
|
|
|
(_, batch_logits, _) = trainer.prediction_step( |
|
trainer.model, |
|
batch, |
|
prediction_loss_only=False, |
|
) |
|
|
|
prompt_token_ids_list = [] |
|
pred_step_token_ids_list = [] |
|
completion_token_ids_list = [] |
|
|
|
for input_ids_all, labels_all, pos_ids, logits in zip( |
|
batch_input_ids, |
|
batch_labels, |
|
batch_pos_ids, |
|
batch_logits, |
|
): |
|
if pos_ids is None: |
|
pos_ranges = [(0, len(input_ids_all) - 1)] |
|
else: |
|
pos_ranges = find_ranges(pos_ids) |
|
|
|
for pos_range in pos_ranges: |
|
start, end = pos_range |
|
if start == end: |
|
continue |
|
|
|
input_ids = input_ids_all[start : end + 1] |
|
labels = labels_all[start : end + 1] |
|
|
|
tokens_without_loss = labels == IGNORE_INDEX |
|
tokens_with_loss = labels != IGNORE_INDEX |
|
tokens_exclude_padding = input_ids != tokenizer.pad_token_id |
|
prompt_token_includes = ( |
|
tokens_without_loss & tokens_exclude_padding |
|
) |
|
|
|
prompt_token_ids = input_ids[prompt_token_includes] |
|
prompt_token_ids_list.append(prompt_token_ids) |
|
|
|
completion_token_ids = input_ids[tokens_with_loss] |
|
completion_token_ids_list.append(completion_token_ids) |
|
|
|
pred_step_token_ids = logits_to_tokens( |
|
logits[start : end + 1] |
|
)[tokens_with_loss] |
|
pred_step_token_ids_list.append(pred_step_token_ids) |
|
|
|
prompt_texts = tokenizer.batch_decode( |
|
prompt_token_ids_list, skip_special_tokens=True |
|
) |
|
completion_texts = tokenizer.batch_decode( |
|
completion_token_ids_list, skip_special_tokens=True |
|
) |
|
pred_step_texts = tokenizer.batch_decode( |
|
pred_step_token_ids_list, skip_special_tokens=True |
|
) |
|
|
|
with torch.no_grad(): |
|
prompt_encoding = tokenizer( |
|
prompt_texts, padding=True, return_tensors="pt" |
|
).to(self.cfg.device) |
|
predictions = trainer.model.generate( |
|
**prompt_encoding, generation_config=generation_config |
|
) |
|
|
|
prediction_all_tokens = predictions["sequences"].cpu().tolist() |
|
prediction_without_prompt_tokens_list = [] |
|
for prompt_token_ids, prediction_tokens in zip( |
|
prompt_token_ids_list, prediction_all_tokens |
|
): |
|
prediction_without_prompt_tokens = prediction_tokens[ |
|
len(prompt_token_ids) : |
|
] |
|
prediction_without_prompt_tokens_list.append( |
|
prediction_without_prompt_tokens |
|
) |
|
|
|
predicted_texts = tokenizer.batch_decode( |
|
prediction_without_prompt_tokens_list, skip_special_tokens=True |
|
) |
|
|
|
for ( |
|
prompt_text, |
|
completion_text, |
|
prediction_text, |
|
pred_step_text, |
|
) in zip( |
|
prompt_texts, completion_texts, predicted_texts, pred_step_texts |
|
): |
|
table.add_data( |
|
row_index, |
|
prompt_text, |
|
completion_text, |
|
prediction_text, |
|
pred_step_text, |
|
) |
|
row_index += 1 |
|
|
|
wandb.run.log({f"{name} - Predictions vs Ground Truth": table}) |
|
|
|
if is_main_process(): |
|
log_table_from_dataloader("Eval", eval_dataloader) |
|
|
|
return control |
|
|
|
return LogPredictionCallback |
|
|
|
|
|
class SaveAxolotlConfigtoWandBCallback(TrainerCallback): |
|
"""Callback to save axolotl config to wandb""" |
|
|
|
def __init__(self, axolotl_config_path): |
|
self.axolotl_config_path = axolotl_config_path |
|
|
|
def on_train_begin( |
|
self, |
|
args: AxolotlTrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**kwargs, |
|
): |
|
if is_main_process(): |
|
try: |
|
|
|
with NamedTemporaryFile( |
|
mode="w", delete=False, suffix=".yml", prefix="axolotl_config_" |
|
) as temp_file: |
|
copyfile(self.axolotl_config_path, temp_file.name) |
|
wandb.save(temp_file.name) |
|
LOG.info( |
|
"The Axolotl config has been saved to the WandB run under files." |
|
) |
|
except (FileNotFoundError, ConnectionError) as err: |
|
LOG.warning(f"Error while saving Axolotl config to WandB: {err}") |
|
return control |
|
|
|
|
|
class SaveAxolotlConfigtoMlflowCallback(TrainerCallback): |
|
"""Callback to save axolotl config to mlflow""" |
|
|
|
def __init__(self, axolotl_config_path): |
|
self.axolotl_config_path = axolotl_config_path |
|
|
|
def on_train_begin( |
|
self, |
|
args: AxolotlTrainingArguments, |
|
state: TrainerState, |
|
control: TrainerControl, |
|
**kwargs, |
|
): |
|
if is_main_process(): |
|
try: |
|
with NamedTemporaryFile( |
|
mode="w", delete=False, suffix=".yml", prefix="axolotl_config_" |
|
) as temp_file: |
|
copyfile(self.axolotl_config_path, temp_file.name) |
|
mlflow.log_artifact(temp_file.name, artifact_path="") |
|
LOG.info( |
|
"The Axolotl config has been saved to the MLflow artifacts." |
|
) |
|
except (FileNotFoundError, ConnectionError) as err: |
|
LOG.warning(f"Error while saving Axolotl config to MLflow: {err}") |
|
return control |
|
|