qwerrwe / src /axolotl /prompt_tokenizers.py
winglian's picture
don't strip the prompt for check since we don't strip to tokenize anymore (#650)
8662e8f unverified
raw
history blame
16.4 kB
"""Module containing PromptTokenizingStrategy and Prompter classes"""
import abc
import copy
import functools
import logging
from typing import Dict, List, Tuple, Union
from fastchat.conversation import Conversation
from transformers import BatchEncoding, PreTrainedTokenizer
from axolotl.monkeypatch.fastchat_conversation_turns import (
add_get_turns_to_conversation,
)
from axolotl.prompters import IGNORE_TOKEN_ID
LOG = logging.getLogger("axolotl")
IGNORE_INDEX = -100
LLAMA_DEFAULT_PAD_TOKEN = "<pad>" # nosec
LLAMA_DEFAULT_EOS_TOKEN = "</s>" # nosec
LLAMA_DEFAULT_BOS_TOKEN = "<s>" # nosec
LLAMA_DEFAULT_UNK_TOKEN = "<unk>" # nosec
add_get_turns_to_conversation()
class InvalidDataException(Exception):
"""
Exception raised when the data is invalid
"""
class PromptTokenizingStrategy(abc.ABC):
"""
Abstract class for tokenizing strategies
"""
def __init__(
self,
prompter,
tokenizer,
train_on_inputs: bool = False,
sequence_len: int = 2048,
):
self.prompter = prompter
self.tokenizer: PreTrainedTokenizer = tokenizer
self.train_on_inputs = train_on_inputs
self.sequence_len = sequence_len
self.max_length = sequence_len
@abc.abstractmethod
def tokenize_prompt(self, prompt):
pass
@property
def supports_batched(self):
return False
@functools.lru_cache(maxsize=128)
def _get_user_token(self):
try:
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>")
if isinstance(id_or_ids, (int,)):
return id_or_ids
except KeyError:
pass
return False
@functools.lru_cache(maxsize=128)
def _get_assistant_token(self):
try:
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>")
if isinstance(id_or_ids, (int,)):
return id_or_ids
except KeyError:
pass
return False
def _tokenize(
self, prompt: str, add_eos_token: bool = True, strip_bos_token: bool = False
) -> BatchEncoding:
result: BatchEncoding
if not prompt:
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
)
if len(result["input_ids"]) == 0:
LOG.warning("Tokenizer result is empty. You may want to audit your dataset")
if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.max_length
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]
result["labels"] = result["input_ids"].copy()
return result
class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for instruction-based prompts.
"""
def parse_instruction_fields(
self, prompt
) -> Union[Tuple[str, str, str], Tuple[str, str, str, str]]:
raise NotImplementedError
def tokenize_prompt(self, prompt):
(
instruction,
input, # pylint: disable=redefined-builtin
response,
) = self.parse_instruction_fields(prompt)
user_prompt = next(
iter(
self.prompter.build_prompt(
instruction,
input,
)
)
)
tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False)
if not self.train_on_inputs:
user_prompt_len = len(tokenized_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_prompt["labels"] = [-100] * user_prompt_len
tokenized_res_prompt = self._tokenize(
response, strip_bos_token=True, add_eos_token=True
)
tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"]
tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"]
tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"]
return tokenized_prompt
def _build_full_prompt(
self, instruction, input, response # pylint: disable=redefined-builtin
):
return next(
iter(
self.prompter.build_prompt(
instruction,
input,
response,
)
)
)
class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["output"],
)
class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca Multiple Choice prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
"\n".join(f'- "{choice}"' for choice in prompt["choices"]),
prompt["solution"] if "solution" in prompt else prompt["explanation"],
)
class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Jeopardy prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
prompt["category"],
"what is " + prompt["answer"],
)
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for OpenAssistant prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["INSTRUCTION"],
"",
prompt["RESPONSE"],
)
class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for SummarizeTLDR prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["article"],
"",
prompt["summary"],
)
class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for GPTeacher prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["response"],
)
class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for NomicGPT4All prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["prompt"],
"",
prompt["response"],
)
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for Reflection prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
raise NotImplementedError
def tokenize_prompt(self, prompt):
(
instruction,
input, # pylint: disable=redefined-builtin
output,
reflection,
corrected,
) = self.parse_instruction_fields(prompt)
full_prompt = self._build_full_prompt(
instruction, input, output, reflection, corrected
)
tokenized_full_prompt = self._tokenize(full_prompt)
if not self.train_on_inputs:
user_prompt = next(
iter(
self.prompter.build_prompt(
instruction,
input,
)
)
)
tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]
return tokenized_full_prompt
def _build_full_prompt(
self, instruction, input, output, reflection, corrected
): # pylint: disable=redefined-builtin
return next(
iter(
self.prompter.build_prompt(
instruction,
input,
output,
reflection,
corrected,
)
)
)
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca Reflection prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["output"],
prompt["reflection"],
prompt["corrected"],
)
class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for ShareGPT prompts.
"""
def get_conversation_thread(self, prompt):
return prompt["conversations"]
def tokenize_prompt(self, prompt):
result, current_len = tokenize_prompt_default()
user_token = self._get_user_token()
assistant_token = self._get_assistant_token()
conversation: Conversation = (
self.prompter._conversation # pylint: disable=protected-access
)
try:
for _, part in enumerate(
self.prompter.build_prompt(self.get_conversation_thread(prompt))
):
if isinstance(part, tuple):
if conversation.roles[0] in part[0]:
turn = part[0] + part[1] if not user_token else part[1]
# this is still the user query, we should
if not part[1].strip():
LOG.warning(f"user turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=False,
strip_bos_token=True,
)
if user_token:
res["input_ids"] = [user_token, *res["input_ids"]]
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
elif conversation.roles[1] in part[0]:
# TODO label assistant token/tokens w/ IGNORE_TOKEN_ID
turn = part[0] + part[1] if not assistant_token else part[1]
# this should be the assistant response, should end with an eos token
if not part[1].strip():
LOG.warning(f"assistant turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=True,
strip_bos_token=True,
)
if assistant_token:
res["input_ids"] = [
assistant_token,
*res["input_ids"],
]
# not masked out from labels
labels = copy.deepcopy(res["input_ids"])
elif part[0] == "":
turn = part[1]
# this is only ever the first part, should include the bos token and the user query
res = self._tokenize(
turn, add_eos_token=False, strip_bos_token=False
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
else:
LOG.warning(f"unhandled role: {part[0]}")
continue
# pylint: disable=duplicate-code
result, current_len = parse_tokenized_to_result(
result,
current_len,
res,
labels,
pad_token_id=self.tokenizer.pad_token_id,
)
return result
except (KeyError, AssertionError, IndexError) as err:
raise InvalidDataException(str(err)) from err
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
if not prompt.strip():
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]
result["labels"] = result["input_ids"].copy()
return result
def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]:
"""
Returns the default values for the tokenize prompt function
"""
result: Dict[str, List[int]] = {
"input_ids": [],
"attention_mask": [],
"labels": [],
}
current_len = 0
return result, current_len
def parse_tokenized_to_result(
result: Dict[str, List[int]],
current_len: int,
res: Dict[str, List[int]],
labels: List[int],
pad_token_id: Union[int, None] = None,
) -> Tuple[Dict[str, List[int]], int]:
"""
Parses the tokenized prompt and append the tokenized input_ids, attention_mask and labels to the result
"""
input_ids = res["input_ids"]
input_len = len(input_ids)
result["input_ids"][current_len : current_len + input_len] = input_ids
result["attention_mask"][current_len : current_len + input_len] = [
1 if x != pad_token_id else 0 for x in input_ids
]
result["labels"][current_len : current_len + input_len] = labels
current_len += input_len
return result, current_len