winglian's picture
improve handling of the prepared ds path and other cfg defaults (#701)
1c412c7 unverified
raw
history blame
25 kB
"""Module containing data utilities"""
import functools
import hashlib
import logging
from pathlib import Path
from typing import Dict, List, Tuple, Union
import torch
from datasets import (
Dataset,
DatasetDict,
concatenate_datasets,
load_dataset,
load_from_disk,
)
from huggingface_hub import hf_hub_download
from transformers import PreTrainedTokenizerBase
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
from axolotl.datasets import ConstantLengthDataset, TokenizedPromptDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_tokenizers import (
AlpacaMultipleChoicePromptTokenizingStrategy,
AlpacaPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
GPTeacherPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
JeopardyPrompter,
MultipleChoiceConcisePrompter,
MultipleChoiceExplainPrompter,
ReflectAlpacaPrompter,
SummarizeTLDRPrompter,
)
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process, zero_first
from axolotl.utils.trainer import (
calculate_total_num_steps,
process_datasets_for_packing,
)
LOG = logging.getLogger("axolotl")
def md5(to_hash: str, encoding: str = "utf-8") -> str:
try:
return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest()
except TypeError:
return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec
def prepare_dataset(cfg, tokenizer):
if not cfg.pretraining_dataset:
with zero_first(is_main_process()):
train_dataset, eval_dataset = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
)
else:
train_dataset = load_pretraining_dataset(
cfg.pretraining_dataset,
tokenizer,
max_tokens=cfg.sequence_len,
seed=cfg.seed or 42,
)
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
train_dataset = train_dataset.with_format("torch")
eval_dataset = None
return train_dataset, eval_dataset, cfg.max_steps
with zero_first(is_main_process()):
train_dataset, eval_dataset = process_datasets_for_packing(
cfg, train_dataset, eval_dataset, tokenizer
)
if cfg.max_steps:
total_num_steps = min(
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
)
LOG.info(f"Maximum number of steps set at {total_num_steps}")
else:
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
return train_dataset, eval_dataset, total_num_steps
def load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
) -> DatasetDict:
tokenizer_name = tokenizer.__class__.__name__
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
)
)
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
token=use_auth_token,
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif cfg.dataset_prepared_path and any(prepared_ds_path.glob("*")):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared dataset loaded from disk...")
else:
LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
LOG.info("Loading raw datasets...")
if cfg.seed:
seed = cfg.seed
else:
LOG.info("No seed provided, using default seed of 42")
seed = 42
datasets = []
def for_d_in_datasets(dataset_configs):
for dataset in dataset_configs:
if dataset.name and isinstance(dataset.name, list):
for name in dataset.name:
yield DictDefault({**dataset, "name": name})
else:
yield dataset
# pylint: disable=invalid-name
for d in for_d_in_datasets(cfg.datasets):
ds: Union[Dataset, DatasetDict] = None
ds_from_hub = False
try:
load_dataset(
d.path,
name=d.name,
streaming=True,
token=use_auth_token,
)
ds_from_hub = True
except FileNotFoundError:
pass
# prefer local dataset, even if hub exists
local_path = Path(d.path)
if local_path.exists():
if local_path.is_dir():
# TODO dirs with arrow or parquet files could be loaded with `load_from_disk`
ds = load_dataset(
d.path,
name=d.name,
data_files=d.data_files,
streaming=False,
split=None,
)
elif local_path.is_file():
ds_type = "json"
if d.ds_type:
ds_type = d.ds_type
elif ".parquet" in d.path:
ds_type = "parquet"
elif ".arrow" in d.path:
ds_type = "arrow"
elif ".csv" in d.path:
ds_type = "csv"
elif ".txt" in d.path:
ds_type = "text"
ds = load_dataset(
ds_type,
name=d.name,
data_files=d.path,
streaming=False,
split=None,
)
else:
raise ValueError(
"unhandled dataset load: local path exists, but is neither a directory or a file"
)
elif ds_from_hub:
ds = load_dataset(
d.path,
name=d.name,
streaming=False,
data_files=d.data_files,
token=use_auth_token,
)
else:
if isinstance(d.data_files, str):
fp = hf_hub_download(
repo_id=d.path,
repo_type="dataset",
filename=d.data_files,
)
elif isinstance(d.data_files, list):
fp = []
for file in d.data_files:
fp.append(
hf_hub_download(
repo_id=d.path,
repo_type="dataset",
filename=file,
)
)
else:
raise ValueError(
"data_files must be either a string or list of strings"
)
ds = load_dataset(
"json", name=d.name, data_files=fp, streaming=False, split=None
)
if not ds:
raise ValueError("unhandled dataset load")
# support for using a subset of the data
if d.shards:
if "train" in ds:
ds = ds.shuffle(seed=seed)["train"].shard(
num_shards=d.shards, index=0
)
else:
ds = ds.shuffle(seed=seed).shard(num_shards=d.shards, index=0)
d_base_type = d_prompt_style = None
d_type = d.type
if isinstance(d_type, str):
d_type_split = d_type.split(":")
d_base_type = d_type_split[0]
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
if "train" in ds:
ds = ds["train"]
elif (
isinstance(ds, DatasetDict)
and d.train_on_split
and d.train_on_split in ds
):
ds = ds[d.train_on_split]
elif isinstance(ds, DatasetDict):
raise ValueError(
f"no train split found for dataset {d.path}, you may specify a split with 'train_on_split: `"
)
if (
"input_ids" in ds.features
and "attention_mask" in ds.features
and "labels" in ds.features
):
# dataset is already tokenized, just drop it straight in
datasets.append(ds)
elif isinstance(d.type, DictDefault):
ds_strategy = load("user_defined", tokenizer, cfg, d.type.to_dict())
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif ds_strategy := load(d.type, tokenizer, cfg, d):
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "explainchoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceExplainPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "concisechoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceConcisePrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "summarizetldr":
ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
SummarizeTLDRPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "jeopardy":
ds_strategy = JeopardyPromptTokenizingStrategy(
JeopardyPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "oasst":
ds_strategy = OpenAssistantPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "reflection":
ds_strategy = AlpacaReflectionPTStrategy(
ReflectAlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
else:
suffix = ""
if ":load_" in d.type:
suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?"
LOG.error(f"unhandled prompt tokenization strategy: {d.type}. {suffix}")
raise ValueError(
f"unhandled prompt tokenization strategy: {d.type} {suffix}"
)
LOG.info("merging datasets")
dataset = concatenate_datasets(datasets)
if len(datasets) > 1:
LOG.info("shuffle merged datasets")
dataset = dataset.shuffle(seed=seed)
if cfg.local_rank == 0:
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
return dataset
def load_prepare_datasets(
tokenizer: PreTrainedTokenizerBase,
cfg,
default_dataset_prepared_path,
) -> Tuple[Dataset, Dataset]:
max_packed_sequence_len = (
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
)
max_packed_sequence_len = min(
max_packed_sequence_len, cfg.sequence_len
) # make sure we don't accidentally set it larger than sequence_len
tokenizer_name = tokenizer.__class__.__name__
if cfg.max_packed_sequence_len is not None:
# see if we can go ahead and load the stacked dataset
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ str(max_packed_sequence_len)
+ seed
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
)
)
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
LOG.info(
f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
token=use_auth_token,
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif cfg.dataset_prepared_path and any(prepared_ds_path.glob("*")):
LOG.info(
f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
)
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared packed dataset loaded from disk...")
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.seed:
dataset = dataset.shuffle(seed=cfg.seed)
constant_len_dataset = ConstantLengthDataset(
tokenizer,
[dataset],
seq_length=max_packed_sequence_len,
)
LOG.info(f"packing master dataset to len: {cfg.max_packed_sequence_len}")
dataset = Dataset.from_list(list(constant_len_dataset))
# filter out bad data
# TODO convert to dataset.filter(...)
dataset = Dataset.from_list(
[
d
for d in dataset
if len(d["input_ids"]) <= cfg.sequence_len
and len(d["input_ids"]) > 0
and len(d["input_ids"]) == len(d["attention_mask"])
and len(d["input_ids"]) == len(d["labels"])
]
)
if cfg.local_rank == 0:
LOG.info(
f"Saving packed prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
private=True,
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
LOG.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num,
index=cfg.dataset_shard_idx,
)
if cfg.val_set_size:
# ensure we end up with the same fingerprint by doing rank0 first and being able to cache
to_hash_train = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "train"
+ "|"
+ str(cfg.seed or 42)
)
to_hash_test = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "test"
+ "|"
+ str(cfg.seed or 42)
)
train_fingerprint = md5(to_hash_train)
test_fingerprint = md5(to_hash_test)
with zero_first(is_main_process()):
dataset = dataset.train_test_split(
test_size=cfg.val_set_size,
shuffle=False,
seed=cfg.seed or 42,
train_new_fingerprint=train_fingerprint,
test_new_fingerprint=test_fingerprint,
)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
else:
train_dataset = dataset
eval_dataset = None
return train_dataset, eval_dataset
def encode_pretraining(
tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str]
) -> Dict[str, List]:
res = tokenizer(
examples,
truncation=True,
max_length=max_tokens - 2,
add_special_tokens=True,
)
# Convert to PyTorch tensors
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
new_input_ids = []
new_attention_mask = []
# Append EOS and PAD tokens to input_ids, and correct attention_mask
for i, _ in enumerate(input_ids):
input_ids[i] = torch.cat(
(
input_ids[i],
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
),
dim=0,
)
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
# Concatenate tokens so that their lengths are less than max_tokens
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
for ids, mask in zip(input_ids, attention_mask):
if buffer_input_ids.numel() == max_tokens:
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
else:
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
if buffer_input_ids.numel() > 0: # for any leftover tokens
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
ret = {
"input_ids": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_input_ids],
"attention_mask": [seq.tolist() for seq in new_attention_mask],
}
LOG.debug(len(ret["input_ids"]))
return ret
def load_pretraining_dataset(path, tokenizer, max_tokens=2048, seed=42):
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
dataset = load_dataset(path, streaming=True, split="train")
dataset = dataset.shuffle(seed=seed, buffer_size=10_000)
dataset = dataset.map(
encode,
batched=True,
input_columns="text",
# remove all the existing columns after mapping since they end up having
# a different length than the encoded/tokenized column
remove_columns=dataset.features.keys(),
)
return dataset