Kwak / app.py
Doubleupai's picture
Update app.py
533f676 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Replace 'YOUR_ACCESS_TOKEN' with your actual Hugging Face access token
model_name = "sambanovasystems/SambaNova-Qwen2.5-Coder-Artifacts"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token='YOUR_ACCESS_TOKEN')
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token='YOUR_ACCESS_TOKEN')
def generate_text(prompt):
# Generate text using the model
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return text
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>AI Text Generator</h1>")
with gr.Row():
with gr.Column():
user_input = gr.Textbox(label="Input Prompt", placeholder="Enter your prompt here...")
generate_btn = gr.Button("Generate Text")
with gr.Column():
output_text = gr.Textbox(label="Generated Text", readonly=True)
generate_btn.click(generate_text, inputs=user_input, outputs=output_text)
# Launch the app
demo.launch(share=True, theme="macos", css=".gradio-container {background-color: #f0f0f0;}")