Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- viewcrafter.py +12 -5
viewcrafter.py
CHANGED
@@ -72,10 +72,14 @@ class ViewCrafter:
|
|
72 |
view_masks = renderer(point_cloud_mask)
|
73 |
return images, view_masks
|
74 |
|
75 |
-
def run_render(self, pcd, imgs,masks, H, W, camera_traj,num_views):
|
|
|
|
|
|
|
|
|
76 |
render_setup = setup_renderer(camera_traj, image_size=(H,W))
|
77 |
renderer = render_setup['renderer']
|
78 |
-
render_results, viewmask = self.render_pcd(pcd, imgs, masks, num_views,renderer,
|
79 |
return render_results, viewmask
|
80 |
|
81 |
|
@@ -119,7 +123,7 @@ class ViewCrafter:
|
|
119 |
## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
|
120 |
num_candidates = 2
|
121 |
candidate_poses,thetas,phis = generate_candidate_poses(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0],num_candidates, self.device)
|
122 |
-
_, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, candidate_poses,num_candidates)
|
123 |
nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
|
124 |
save_image( viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask0_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
|
125 |
theta_nbv = thetas[nbv_id]
|
@@ -139,11 +143,14 @@ class ViewCrafter:
|
|
139 |
r = [float(i) for i in lines[2].split()]
|
140 |
else:
|
141 |
phi, theta, r = self.gradio_traj
|
142 |
-
|
|
|
|
|
143 |
else:
|
144 |
raise KeyError(f"Invalid Mode: {self.opts.mode}")
|
145 |
|
146 |
-
render_results, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, camera_traj,num_views)
|
|
|
147 |
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
|
148 |
render_results[0] = self.img_ori
|
149 |
if self.opts.mode == 'single_view_txt':
|
|
|
72 |
view_masks = renderer(point_cloud_mask)
|
73 |
return images, view_masks
|
74 |
|
75 |
+
def run_render(self, pcd, imgs,masks, H, W, camera_traj,num_views,use_cpu=False):
|
76 |
+
if use_cpu:
|
77 |
+
device = torch.device("cpu")
|
78 |
+
else:
|
79 |
+
device = self.device
|
80 |
render_setup = setup_renderer(camera_traj, image_size=(H,W))
|
81 |
renderer = render_setup['renderer']
|
82 |
+
render_results, viewmask = self.render_pcd(pcd, imgs, masks, num_views,renderer,device)
|
83 |
return render_results, viewmask
|
84 |
|
85 |
|
|
|
123 |
## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
|
124 |
num_candidates = 2
|
125 |
candidate_poses,thetas,phis = generate_candidate_poses(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0],num_candidates, self.device)
|
126 |
+
_, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, candidate_poses,num_candidates,use_cpu=True)
|
127 |
nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
|
128 |
save_image( viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask0_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
|
129 |
theta_nbv = thetas[nbv_id]
|
|
|
143 |
r = [float(i) for i in lines[2].split()]
|
144 |
else:
|
145 |
phi, theta, r = self.gradio_traj
|
146 |
+
device = torch.device("cpu")
|
147 |
+
camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, device,viz_traj=True, save_dir = self.opts.save_dir)
|
148 |
+
# camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, self.device,viz_traj=True, save_dir = self.opts.save_dir)
|
149 |
else:
|
150 |
raise KeyError(f"Invalid Mode: {self.opts.mode}")
|
151 |
|
152 |
+
render_results, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, camera_traj,num_views,use_cpu=True)
|
153 |
+
render_results = render_results.to(self.device)
|
154 |
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
|
155 |
render_results[0] = self.img_ori
|
156 |
if self.opts.mode == 'single_view_txt':
|