Spaces:
Running
on
Zero
Running
on
Zero
Upload 9 files
Browse files- scripts/evaluation/__pycache__/funcs.cpython-39.pyc +0 -0
- scripts/evaluation/__pycache__/inference.cpython-39.pyc +0 -0
- scripts/evaluation/ddp_wrapper.py +46 -46
- scripts/evaluation/funcs.py +225 -204
- scripts/evaluation/inference.py +346 -328
- scripts/gradio/__pycache__/i2v_test.cpython-39.pyc +0 -0
- scripts/gradio/i2v_test.py +105 -101
- scripts/run.sh +45 -9
- scripts/run_mp.sh +102 -0
scripts/evaluation/__pycache__/funcs.cpython-39.pyc
CHANGED
Binary files a/scripts/evaluation/__pycache__/funcs.cpython-39.pyc and b/scripts/evaluation/__pycache__/funcs.cpython-39.pyc differ
|
|
scripts/evaluation/__pycache__/inference.cpython-39.pyc
ADDED
Binary file (12.1 kB). View file
|
|
scripts/evaluation/ddp_wrapper.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
-
import datetime
|
2 |
-
import argparse, importlib
|
3 |
-
from pytorch_lightning import seed_everything
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.distributed as dist
|
7 |
-
|
8 |
-
def setup_dist(local_rank):
|
9 |
-
if dist.is_initialized():
|
10 |
-
return
|
11 |
-
torch.cuda.set_device(local_rank)
|
12 |
-
torch.distributed.init_process_group('nccl', init_method='env://')
|
13 |
-
|
14 |
-
|
15 |
-
def get_dist_info():
|
16 |
-
if dist.is_available():
|
17 |
-
initialized = dist.is_initialized()
|
18 |
-
else:
|
19 |
-
initialized = False
|
20 |
-
if initialized:
|
21 |
-
rank = dist.get_rank()
|
22 |
-
world_size = dist.get_world_size()
|
23 |
-
else:
|
24 |
-
rank = 0
|
25 |
-
world_size = 1
|
26 |
-
return rank, world_size
|
27 |
-
|
28 |
-
|
29 |
-
if __name__ == '__main__':
|
30 |
-
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
31 |
-
parser = argparse.ArgumentParser()
|
32 |
-
parser.add_argument("--module", type=str, help="module name", default="inference")
|
33 |
-
parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
|
34 |
-
args, unknown = parser.parse_known_args()
|
35 |
-
inference_api = importlib.import_module(args.module, package=None)
|
36 |
-
|
37 |
-
inference_parser = inference_api.get_parser()
|
38 |
-
inference_args, unknown = inference_parser.parse_known_args()
|
39 |
-
|
40 |
-
seed_everything(inference_args.seed)
|
41 |
-
setup_dist(args.local_rank)
|
42 |
-
torch.backends.cudnn.benchmark = True
|
43 |
-
rank, gpu_num = get_dist_info()
|
44 |
-
|
45 |
-
inference_args.savedir = inference_args.savedir+str('_seed')+str(inference_args.seed)
|
46 |
-
print("@
|
47 |
inference_api.run_inference(inference_args, gpu_num, rank)
|
|
|
1 |
+
import datetime
|
2 |
+
import argparse, importlib
|
3 |
+
from pytorch_lightning import seed_everything
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
def setup_dist(local_rank):
|
9 |
+
if dist.is_initialized():
|
10 |
+
return
|
11 |
+
torch.cuda.set_device(local_rank)
|
12 |
+
torch.distributed.init_process_group('nccl', init_method='env://')
|
13 |
+
|
14 |
+
|
15 |
+
def get_dist_info():
|
16 |
+
if dist.is_available():
|
17 |
+
initialized = dist.is_initialized()
|
18 |
+
else:
|
19 |
+
initialized = False
|
20 |
+
if initialized:
|
21 |
+
rank = dist.get_rank()
|
22 |
+
world_size = dist.get_world_size()
|
23 |
+
else:
|
24 |
+
rank = 0
|
25 |
+
world_size = 1
|
26 |
+
return rank, world_size
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == '__main__':
|
30 |
+
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument("--module", type=str, help="module name", default="inference")
|
33 |
+
parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
|
34 |
+
args, unknown = parser.parse_known_args()
|
35 |
+
inference_api = importlib.import_module(args.module, package=None)
|
36 |
+
|
37 |
+
inference_parser = inference_api.get_parser()
|
38 |
+
inference_args, unknown = inference_parser.parse_known_args()
|
39 |
+
|
40 |
+
seed_everything(inference_args.seed)
|
41 |
+
setup_dist(args.local_rank)
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
rank, gpu_num = get_dist_info()
|
44 |
+
|
45 |
+
# inference_args.savedir = inference_args.savedir+str('_seed')+str(inference_args.seed)
|
46 |
+
print("@DynamiCrafter Inference [rank%d]: %s"%(rank, now))
|
47 |
inference_api.run_inference(inference_args, gpu_num, rank)
|
scripts/evaluation/funcs.py
CHANGED
@@ -1,205 +1,226 @@
|
|
1 |
-
import os, sys, glob
|
2 |
-
import numpy as np
|
3 |
-
from collections import OrderedDict
|
4 |
-
from decord import VideoReader, cpu
|
5 |
-
import cv2
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torchvision
|
9 |
-
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
10 |
-
from lvdm.models.samplers.ddim import DDIMSampler
|
11 |
-
from einops import rearrange
|
12 |
-
|
13 |
-
|
14 |
-
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
15 |
-
cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
|
16 |
-
ddim_sampler = DDIMSampler(model)
|
17 |
-
uncond_type = model.uncond_type
|
18 |
-
batch_size = noise_shape[0]
|
19 |
-
fs = cond["fs"]
|
20 |
-
del cond["fs"]
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
if
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
return z
|
|
|
1 |
+
import os, sys, glob
|
2 |
+
import numpy as np
|
3 |
+
from collections import OrderedDict
|
4 |
+
from decord import VideoReader, cpu
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
10 |
+
from lvdm.models.samplers.ddim import DDIMSampler
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
|
14 |
+
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
15 |
+
cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
|
16 |
+
ddim_sampler = DDIMSampler(model)
|
17 |
+
uncond_type = model.uncond_type
|
18 |
+
batch_size = noise_shape[0]
|
19 |
+
fs = cond["fs"]
|
20 |
+
del cond["fs"]
|
21 |
+
if noise_shape[-1] == 32:
|
22 |
+
timestep_spacing = "uniform"
|
23 |
+
guidance_rescale = 0.0
|
24 |
+
else:
|
25 |
+
timestep_spacing = "uniform_trailing"
|
26 |
+
guidance_rescale = 0.7
|
27 |
+
## construct unconditional guidance
|
28 |
+
if cfg_scale != 1.0:
|
29 |
+
if uncond_type == "empty_seq":
|
30 |
+
prompts = batch_size * [""]
|
31 |
+
#prompts = N * T * [""] ## if is_imgbatch=True
|
32 |
+
uc_emb = model.get_learned_conditioning(prompts)
|
33 |
+
elif uncond_type == "zero_embed":
|
34 |
+
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
|
35 |
+
uc_emb = torch.zeros_like(c_emb)
|
36 |
+
|
37 |
+
## process image embedding token
|
38 |
+
if hasattr(model, 'embedder'):
|
39 |
+
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
|
40 |
+
## img: b c h w >> b l c
|
41 |
+
uc_img = model.embedder(uc_img)
|
42 |
+
uc_img = model.image_proj_model(uc_img)
|
43 |
+
uc_emb = torch.cat([uc_emb, uc_img], dim=1)
|
44 |
+
|
45 |
+
if isinstance(cond, dict):
|
46 |
+
uc = {key:cond[key] for key in cond.keys()}
|
47 |
+
uc.update({'c_crossattn': [uc_emb]})
|
48 |
+
else:
|
49 |
+
uc = uc_emb
|
50 |
+
else:
|
51 |
+
uc = None
|
52 |
+
|
53 |
+
x_T = None
|
54 |
+
batch_variants = []
|
55 |
+
|
56 |
+
for _ in range(n_samples):
|
57 |
+
if ddim_sampler is not None:
|
58 |
+
kwargs.update({"clean_cond": True})
|
59 |
+
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
60 |
+
conditioning=cond,
|
61 |
+
batch_size=noise_shape[0],
|
62 |
+
shape=noise_shape[1:],
|
63 |
+
verbose=False,
|
64 |
+
unconditional_guidance_scale=cfg_scale,
|
65 |
+
unconditional_conditioning=uc,
|
66 |
+
eta=ddim_eta,
|
67 |
+
temporal_length=noise_shape[2],
|
68 |
+
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
69 |
+
x_T=x_T,
|
70 |
+
fs=fs,
|
71 |
+
timestep_spacing=timestep_spacing,
|
72 |
+
guidance_rescale=guidance_rescale,
|
73 |
+
**kwargs
|
74 |
+
)
|
75 |
+
## reconstruct from latent to pixel space
|
76 |
+
batch_images = model.decode_first_stage(samples)
|
77 |
+
batch_variants.append(batch_images)
|
78 |
+
## batch, <samples>, c, t, h, w
|
79 |
+
batch_variants = torch.stack(batch_variants, dim=1)
|
80 |
+
return batch_variants
|
81 |
+
|
82 |
+
|
83 |
+
def get_filelist(data_dir, ext='*'):
|
84 |
+
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
|
85 |
+
file_list.sort()
|
86 |
+
return file_list
|
87 |
+
|
88 |
+
def get_dirlist(path):
|
89 |
+
list = []
|
90 |
+
if (os.path.exists(path)):
|
91 |
+
files = os.listdir(path)
|
92 |
+
for file in files:
|
93 |
+
m = os.path.join(path,file)
|
94 |
+
if (os.path.isdir(m)):
|
95 |
+
list.append(m)
|
96 |
+
list.sort()
|
97 |
+
return list
|
98 |
+
|
99 |
+
|
100 |
+
def load_model_checkpoint(model, ckpt):
|
101 |
+
def load_checkpoint(model, ckpt, full_strict):
|
102 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
103 |
+
if "state_dict" in list(state_dict.keys()):
|
104 |
+
state_dict = state_dict["state_dict"]
|
105 |
+
try:
|
106 |
+
model.load_state_dict(state_dict, strict=full_strict)
|
107 |
+
except:
|
108 |
+
## rename the keys for 256x256 model
|
109 |
+
new_pl_sd = OrderedDict()
|
110 |
+
for k,v in state_dict.items():
|
111 |
+
new_pl_sd[k] = v
|
112 |
+
|
113 |
+
for k in list(new_pl_sd.keys()):
|
114 |
+
if "framestride_embed" in k:
|
115 |
+
new_key = k.replace("framestride_embed", "fps_embedding")
|
116 |
+
new_pl_sd[new_key] = new_pl_sd[k]
|
117 |
+
del new_pl_sd[k]
|
118 |
+
model.load_state_dict(new_pl_sd, strict=full_strict)
|
119 |
+
else:
|
120 |
+
## deepspeed
|
121 |
+
new_pl_sd = OrderedDict()
|
122 |
+
for key in state_dict['module'].keys():
|
123 |
+
new_pl_sd[key[16:]]=state_dict['module'][key]
|
124 |
+
model.load_state_dict(new_pl_sd, strict=full_strict)
|
125 |
+
|
126 |
+
return model
|
127 |
+
load_checkpoint(model, ckpt, full_strict=True)
|
128 |
+
print('>>> model checkpoint loaded.')
|
129 |
+
return model
|
130 |
+
|
131 |
+
|
132 |
+
def load_prompts(prompt_file):
|
133 |
+
f = open(prompt_file, 'r')
|
134 |
+
prompt_list = []
|
135 |
+
for idx, line in enumerate(f.readlines()):
|
136 |
+
l = line.strip()
|
137 |
+
if len(l) != 0:
|
138 |
+
prompt_list.append(l)
|
139 |
+
f.close()
|
140 |
+
return prompt_list
|
141 |
+
|
142 |
+
|
143 |
+
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
|
144 |
+
'''
|
145 |
+
Notice about some special cases:
|
146 |
+
1. video_frames=-1 means to take all the frames (with fs=1)
|
147 |
+
2. when the total video frames is less than required, padding strategy will be used (repreated last frame)
|
148 |
+
'''
|
149 |
+
fps_list = []
|
150 |
+
batch_tensor = []
|
151 |
+
assert frame_stride > 0, "valid frame stride should be a positive interge!"
|
152 |
+
for filepath in filepath_list:
|
153 |
+
padding_num = 0
|
154 |
+
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
|
155 |
+
fps = vidreader.get_avg_fps()
|
156 |
+
total_frames = len(vidreader)
|
157 |
+
max_valid_frames = (total_frames-1) // frame_stride + 1
|
158 |
+
if video_frames < 0:
|
159 |
+
## all frames are collected: fs=1 is a must
|
160 |
+
required_frames = total_frames
|
161 |
+
frame_stride = 1
|
162 |
+
else:
|
163 |
+
required_frames = video_frames
|
164 |
+
query_frames = min(required_frames, max_valid_frames)
|
165 |
+
frame_indices = [frame_stride*i for i in range(query_frames)]
|
166 |
+
|
167 |
+
## [t,h,w,c] -> [c,t,h,w]
|
168 |
+
frames = vidreader.get_batch(frame_indices)
|
169 |
+
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
|
170 |
+
frame_tensor = (frame_tensor / 255. - 0.5) * 2
|
171 |
+
if max_valid_frames < required_frames:
|
172 |
+
padding_num = required_frames - max_valid_frames
|
173 |
+
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
|
174 |
+
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
|
175 |
+
batch_tensor.append(frame_tensor)
|
176 |
+
sample_fps = int(fps/frame_stride)
|
177 |
+
fps_list.append(sample_fps)
|
178 |
+
|
179 |
+
return torch.stack(batch_tensor, dim=0)
|
180 |
+
|
181 |
+
from PIL import Image
|
182 |
+
def load_image_batch(filepath_list, image_size=(256,256)):
|
183 |
+
batch_tensor = []
|
184 |
+
for filepath in filepath_list:
|
185 |
+
_, filename = os.path.split(filepath)
|
186 |
+
_, ext = os.path.splitext(filename)
|
187 |
+
if ext == '.mp4':
|
188 |
+
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
|
189 |
+
frame = vidreader.get_batch([0])
|
190 |
+
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
|
191 |
+
elif ext == '.png' or ext == '.jpg':
|
192 |
+
img = Image.open(filepath).convert("RGB")
|
193 |
+
rgb_img = np.array(img, np.float32)
|
194 |
+
#bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR)
|
195 |
+
#bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
196 |
+
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
|
197 |
+
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
|
198 |
+
else:
|
199 |
+
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
|
200 |
+
raise NotImplementedError
|
201 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
202 |
+
batch_tensor.append(img_tensor)
|
203 |
+
return torch.stack(batch_tensor, dim=0)
|
204 |
+
|
205 |
+
|
206 |
+
def save_videos(batch_tensors, savedir, filenames, fps=10):
|
207 |
+
# b,samples,c,t,h,w
|
208 |
+
n_samples = batch_tensors.shape[1]
|
209 |
+
for idx, vid_tensor in enumerate(batch_tensors):
|
210 |
+
video = vid_tensor.detach().cpu()
|
211 |
+
video = torch.clamp(video.float(), -1., 1.)
|
212 |
+
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
213 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
|
214 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
215 |
+
grid = (grid + 1.0) / 2.0
|
216 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
217 |
+
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
|
218 |
+
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
219 |
+
|
220 |
+
|
221 |
+
def get_latent_z(model, videos):
|
222 |
+
b, c, t, h, w = videos.shape
|
223 |
+
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
224 |
+
z = model.encode_first_stage(x)
|
225 |
+
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
226 |
return z
|
scripts/evaluation/inference.py
CHANGED
@@ -1,329 +1,347 @@
|
|
1 |
-
import argparse, os, sys, glob
|
2 |
-
import datetime, time
|
3 |
-
from omegaconf import OmegaConf
|
4 |
-
from tqdm import tqdm
|
5 |
-
from einops import rearrange, repeat
|
6 |
-
from collections import OrderedDict
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torchvision
|
10 |
-
import torchvision.transforms as transforms
|
11 |
-
from pytorch_lightning import seed_everything
|
12 |
-
from PIL import Image
|
13 |
-
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
14 |
-
from lvdm.models.samplers.ddim import DDIMSampler
|
15 |
-
from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
|
16 |
-
from utils.utils import instantiate_from_config
|
17 |
-
|
18 |
-
|
19 |
-
def get_filelist(data_dir, postfixes):
|
20 |
-
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes]
|
21 |
-
file_list = []
|
22 |
-
for pattern in patterns:
|
23 |
-
file_list.extend(glob.glob(pattern))
|
24 |
-
file_list.sort()
|
25 |
-
return file_list
|
26 |
-
|
27 |
-
def load_model_checkpoint(model, ckpt):
|
28 |
-
state_dict = torch.load(ckpt, map_location="cpu")
|
29 |
-
if "state_dict" in list(state_dict.keys()):
|
30 |
-
state_dict = state_dict["state_dict"]
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
assert
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
parser
|
311 |
-
parser.add_argument("--
|
312 |
-
parser.add_argument("--
|
313 |
-
parser.add_argument("--
|
314 |
-
|
315 |
-
|
316 |
-
parser.add_argument("--
|
317 |
-
parser.add_argument("--
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
parser =
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
run_inference(args, gpu_num, rank)
|
|
|
1 |
+
import argparse, os, sys, glob
|
2 |
+
import datetime, time
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
from tqdm import tqdm
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
from pytorch_lightning import seed_everything
|
12 |
+
from PIL import Image
|
13 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
14 |
+
from lvdm.models.samplers.ddim import DDIMSampler
|
15 |
+
from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
|
16 |
+
from utils.utils import instantiate_from_config
|
17 |
+
|
18 |
+
|
19 |
+
def get_filelist(data_dir, postfixes):
|
20 |
+
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes]
|
21 |
+
file_list = []
|
22 |
+
for pattern in patterns:
|
23 |
+
file_list.extend(glob.glob(pattern))
|
24 |
+
file_list.sort()
|
25 |
+
return file_list
|
26 |
+
|
27 |
+
def load_model_checkpoint(model, ckpt):
|
28 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
29 |
+
if "state_dict" in list(state_dict.keys()):
|
30 |
+
state_dict = state_dict["state_dict"]
|
31 |
+
try:
|
32 |
+
model.load_state_dict(state_dict, strict=True)
|
33 |
+
except:
|
34 |
+
## rename the keys for 256x256 model
|
35 |
+
new_pl_sd = OrderedDict()
|
36 |
+
for k,v in state_dict.items():
|
37 |
+
new_pl_sd[k] = v
|
38 |
+
|
39 |
+
for k in list(new_pl_sd.keys()):
|
40 |
+
if "framestride_embed" in k:
|
41 |
+
new_key = k.replace("framestride_embed", "fps_embedding")
|
42 |
+
new_pl_sd[new_key] = new_pl_sd[k]
|
43 |
+
del new_pl_sd[k]
|
44 |
+
model.load_state_dict(new_pl_sd, strict=True)
|
45 |
+
else:
|
46 |
+
# deepspeed
|
47 |
+
new_pl_sd = OrderedDict()
|
48 |
+
for key in state_dict['module'].keys():
|
49 |
+
new_pl_sd[key[16:]]=state_dict['module'][key]
|
50 |
+
model.load_state_dict(new_pl_sd)
|
51 |
+
print('>>> model checkpoint loaded.')
|
52 |
+
return model
|
53 |
+
|
54 |
+
def load_prompts(prompt_file):
|
55 |
+
f = open(prompt_file, 'r')
|
56 |
+
prompt_list = []
|
57 |
+
for idx, line in enumerate(f.readlines()):
|
58 |
+
l = line.strip()
|
59 |
+
if len(l) != 0:
|
60 |
+
prompt_list.append(l)
|
61 |
+
f.close()
|
62 |
+
return prompt_list
|
63 |
+
|
64 |
+
def load_data_prompts(data_dir, video_size=(256,256), video_frames=16, gfi=False):
|
65 |
+
transform = transforms.Compose([
|
66 |
+
transforms.Resize(min(video_size)),
|
67 |
+
transforms.CenterCrop(video_size),
|
68 |
+
transforms.ToTensor(),
|
69 |
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
70 |
+
## load prompts
|
71 |
+
prompt_file = get_filelist(data_dir, ['txt'])
|
72 |
+
assert len(prompt_file) > 0, "Error: found NO prompt file!"
|
73 |
+
###### default prompt
|
74 |
+
default_idx = 0
|
75 |
+
default_idx = min(default_idx, len(prompt_file)-1)
|
76 |
+
if len(prompt_file) > 1:
|
77 |
+
print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.")
|
78 |
+
## only use the first one (sorted by name) if multiple exist
|
79 |
+
|
80 |
+
## load video
|
81 |
+
file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG'])
|
82 |
+
# assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!"
|
83 |
+
data_list = []
|
84 |
+
filename_list = []
|
85 |
+
prompt_list = load_prompts(prompt_file[default_idx])
|
86 |
+
n_samples = len(prompt_list)
|
87 |
+
for idx in range(n_samples):
|
88 |
+
image = Image.open(file_list[idx]).convert('RGB')
|
89 |
+
image_tensor = transform(image).unsqueeze(1) # [c,1,h,w]
|
90 |
+
frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames)
|
91 |
+
|
92 |
+
data_list.append(frame_tensor)
|
93 |
+
_, filename = os.path.split(file_list[idx])
|
94 |
+
filename_list.append(filename)
|
95 |
+
|
96 |
+
return filename_list, data_list, prompt_list
|
97 |
+
|
98 |
+
|
99 |
+
def save_results(prompt, samples, filename, fakedir, fps=8, loop=False):
|
100 |
+
filename = filename.split('.')[0]+'.mp4'
|
101 |
+
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
102 |
+
|
103 |
+
## save video
|
104 |
+
videos = [samples]
|
105 |
+
savedirs = [fakedir]
|
106 |
+
for idx, video in enumerate(videos):
|
107 |
+
if video is None:
|
108 |
+
continue
|
109 |
+
# b,c,t,h,w
|
110 |
+
video = video.detach().cpu()
|
111 |
+
video = torch.clamp(video.float(), -1., 1.)
|
112 |
+
n = video.shape[0]
|
113 |
+
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
114 |
+
if loop:
|
115 |
+
video = video[:-1,...]
|
116 |
+
|
117 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, 1*h, n*w]
|
118 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w]
|
119 |
+
grid = (grid + 1.0) / 2.0
|
120 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
121 |
+
path = os.path.join(savedirs[idx], filename)
|
122 |
+
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) ## crf indicates the quality
|
123 |
+
|
124 |
+
|
125 |
+
def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False):
|
126 |
+
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
127 |
+
|
128 |
+
## save video
|
129 |
+
videos = [samples]
|
130 |
+
savedirs = [fakedir]
|
131 |
+
for idx, video in enumerate(videos):
|
132 |
+
if video is None:
|
133 |
+
continue
|
134 |
+
# b,c,t,h,w
|
135 |
+
video = video.detach().cpu()
|
136 |
+
if loop: # remove the last frame
|
137 |
+
video = video[:,:,:-1,...]
|
138 |
+
video = torch.clamp(video.float(), -1., 1.)
|
139 |
+
n = video.shape[0]
|
140 |
+
for i in range(n):
|
141 |
+
grid = video[i,...]
|
142 |
+
grid = (grid + 1.0) / 2.0
|
143 |
+
grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc
|
144 |
+
path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4')
|
145 |
+
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
146 |
+
|
147 |
+
def get_latent_z(model, videos):
|
148 |
+
b, c, t, h, w = videos.shape
|
149 |
+
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
150 |
+
z = model.encode_first_stage(x)
|
151 |
+
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
152 |
+
return z
|
153 |
+
|
154 |
+
|
155 |
+
def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
|
156 |
+
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, gfi=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs):
|
157 |
+
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
|
158 |
+
batch_size = noise_shape[0]
|
159 |
+
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device)
|
160 |
+
|
161 |
+
if not text_input:
|
162 |
+
prompts = [""]*batch_size
|
163 |
+
|
164 |
+
img = videos[:,:,0] #bchw
|
165 |
+
img_emb = model.embedder(img) ## blc
|
166 |
+
img_emb = model.image_proj_model(img_emb)
|
167 |
+
|
168 |
+
cond_emb = model.get_learned_conditioning(prompts)
|
169 |
+
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
|
170 |
+
if model.model.conditioning_key == 'hybrid':
|
171 |
+
z = get_latent_z(model, videos) # b c t h w
|
172 |
+
if loop or gfi:
|
173 |
+
img_cat_cond = torch.zeros_like(z)
|
174 |
+
img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:]
|
175 |
+
img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:]
|
176 |
+
else:
|
177 |
+
img_cat_cond = z[:,:,:1,:,:]
|
178 |
+
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
|
179 |
+
cond["c_concat"] = [img_cat_cond] # b c 1 h w
|
180 |
+
|
181 |
+
if unconditional_guidance_scale != 1.0:
|
182 |
+
if model.uncond_type == "empty_seq":
|
183 |
+
prompts = batch_size * [""]
|
184 |
+
uc_emb = model.get_learned_conditioning(prompts)
|
185 |
+
elif model.uncond_type == "zero_embed":
|
186 |
+
uc_emb = torch.zeros_like(cond_emb)
|
187 |
+
uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
|
188 |
+
uc_img_emb = model.image_proj_model(uc_img_emb)
|
189 |
+
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
|
190 |
+
if model.model.conditioning_key == 'hybrid':
|
191 |
+
uc["c_concat"] = [img_cat_cond]
|
192 |
+
else:
|
193 |
+
uc = None
|
194 |
+
|
195 |
+
## we need one more unconditioning image=yes, text=""
|
196 |
+
if multiple_cond_cfg and cfg_img != 1.0:
|
197 |
+
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
|
198 |
+
if model.model.conditioning_key == 'hybrid':
|
199 |
+
uc_2["c_concat"] = [img_cat_cond]
|
200 |
+
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
|
201 |
+
else:
|
202 |
+
kwargs.update({"unconditional_conditioning_img_nonetext": None})
|
203 |
+
|
204 |
+
z0 = None
|
205 |
+
cond_mask = None
|
206 |
+
|
207 |
+
batch_variants = []
|
208 |
+
for _ in range(n_samples):
|
209 |
+
|
210 |
+
if z0 is not None:
|
211 |
+
cond_z0 = z0.clone()
|
212 |
+
kwargs.update({"clean_cond": True})
|
213 |
+
else:
|
214 |
+
cond_z0 = None
|
215 |
+
if ddim_sampler is not None:
|
216 |
+
|
217 |
+
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
218 |
+
conditioning=cond,
|
219 |
+
batch_size=batch_size,
|
220 |
+
shape=noise_shape[1:],
|
221 |
+
verbose=False,
|
222 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
223 |
+
unconditional_conditioning=uc,
|
224 |
+
eta=ddim_eta,
|
225 |
+
cfg_img=cfg_img,
|
226 |
+
mask=cond_mask,
|
227 |
+
x0=cond_z0,
|
228 |
+
fs=fs,
|
229 |
+
timestep_spacing=timestep_spacing,
|
230 |
+
guidance_rescale=guidance_rescale,
|
231 |
+
**kwargs
|
232 |
+
)
|
233 |
+
|
234 |
+
## reconstruct from latent to pixel space
|
235 |
+
batch_images = model.decode_first_stage(samples)
|
236 |
+
batch_variants.append(batch_images)
|
237 |
+
## variants, batch, c, t, h, w
|
238 |
+
batch_variants = torch.stack(batch_variants)
|
239 |
+
return batch_variants.permute(1, 0, 2, 3, 4, 5)
|
240 |
+
|
241 |
+
|
242 |
+
def run_inference(args, gpu_num, gpu_no):
|
243 |
+
## model config
|
244 |
+
config = OmegaConf.load(args.config)
|
245 |
+
model_config = config.pop("model", OmegaConf.create())
|
246 |
+
|
247 |
+
## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
|
248 |
+
model_config['params']['unet_config']['params']['use_checkpoint'] = False
|
249 |
+
model = instantiate_from_config(model_config)
|
250 |
+
model = model.cuda(gpu_no)
|
251 |
+
model.perframe_ae = args.perframe_ae
|
252 |
+
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!"
|
253 |
+
model = load_model_checkpoint(model, args.ckpt_path)
|
254 |
+
model.eval()
|
255 |
+
|
256 |
+
## run over data
|
257 |
+
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
|
258 |
+
assert args.bs == 1, "Current implementation only support [batch size = 1]!"
|
259 |
+
## latent noise shape
|
260 |
+
h, w = args.height // 8, args.width // 8
|
261 |
+
channels = model.model.diffusion_model.out_channels
|
262 |
+
n_frames = args.video_length
|
263 |
+
print(f'Inference with {n_frames} frames')
|
264 |
+
noise_shape = [args.bs, channels, n_frames, h, w]
|
265 |
+
|
266 |
+
fakedir = os.path.join(args.savedir, "samples")
|
267 |
+
fakedir_separate = os.path.join(args.savedir, "samples_separate")
|
268 |
+
|
269 |
+
# os.makedirs(fakedir, exist_ok=True)
|
270 |
+
os.makedirs(fakedir_separate, exist_ok=True)
|
271 |
+
|
272 |
+
## prompt file setting
|
273 |
+
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!"
|
274 |
+
filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, gfi=args.gfi)
|
275 |
+
num_samples = len(prompt_list)
|
276 |
+
samples_split = num_samples // gpu_num
|
277 |
+
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
|
278 |
+
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
|
279 |
+
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
|
280 |
+
prompt_list_rank = [prompt_list[i] for i in indices]
|
281 |
+
data_list_rank = [data_list[i] for i in indices]
|
282 |
+
filename_list_rank = [filename_list[i] for i in indices]
|
283 |
+
|
284 |
+
start = time.time()
|
285 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
286 |
+
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'):
|
287 |
+
prompts = prompt_list_rank[indice:indice+args.bs]
|
288 |
+
videos = data_list_rank[indice:indice+args.bs]
|
289 |
+
filenames = filename_list_rank[indice:indice+args.bs]
|
290 |
+
if isinstance(videos, list):
|
291 |
+
videos = torch.stack(videos, dim=0).to("cuda")
|
292 |
+
else:
|
293 |
+
videos = videos.unsqueeze(0).to("cuda")
|
294 |
+
|
295 |
+
batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \
|
296 |
+
args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.gfi, args.timestep_spacing, args.guidance_rescale)
|
297 |
+
|
298 |
+
## save each example individually
|
299 |
+
for nn, samples in enumerate(batch_samples):
|
300 |
+
## samples : [n_samples,c,t,h,w]
|
301 |
+
prompt = prompts[nn]
|
302 |
+
filename = filenames[nn]
|
303 |
+
# save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
|
304 |
+
save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
|
305 |
+
|
306 |
+
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
|
307 |
+
|
308 |
+
|
309 |
+
def get_parser():
|
310 |
+
parser = argparse.ArgumentParser()
|
311 |
+
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
|
312 |
+
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
|
313 |
+
parser.add_argument("--config", type=str, help="config (yaml) path")
|
314 |
+
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
|
315 |
+
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
|
316 |
+
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
|
317 |
+
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
|
318 |
+
parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one")
|
319 |
+
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
|
320 |
+
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
|
321 |
+
parser.add_argument("--frame_stride", type=int, default=3, help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)")
|
322 |
+
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
|
323 |
+
parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything")
|
324 |
+
parser.add_argument("--video_length", type=int, default=16, help="inference video length")
|
325 |
+
parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt")
|
326 |
+
parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not")
|
327 |
+
parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not")
|
328 |
+
parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning")
|
329 |
+
parser.add_argument("--timestep_spacing", type=str, default="uniform", help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.")
|
330 |
+
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)")
|
331 |
+
parser.add_argument("--perframe_ae", action='store_true', default=False, help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024")
|
332 |
+
|
333 |
+
## currently not support looping video and generative frame interpolation
|
334 |
+
parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not")
|
335 |
+
parser.add_argument("--gfi", action='store_true', default=False, help="generate generative frame interpolation (gfi) or not")
|
336 |
+
return parser
|
337 |
+
|
338 |
+
|
339 |
+
if __name__ == '__main__':
|
340 |
+
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
341 |
+
print("@DynamiCrafter cond-Inference: %s"%now)
|
342 |
+
parser = get_parser()
|
343 |
+
args = parser.parse_args()
|
344 |
+
|
345 |
+
seed_everything(args.seed)
|
346 |
+
rank, gpu_num = 0, 1
|
347 |
run_inference(args, gpu_num, rank)
|
scripts/gradio/__pycache__/i2v_test.cpython-39.pyc
CHANGED
Binary files a/scripts/gradio/__pycache__/i2v_test.cpython-39.pyc and b/scripts/gradio/__pycache__/i2v_test.cpython-39.pyc differ
|
|
scripts/gradio/i2v_test.py
CHANGED
@@ -1,102 +1,106 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
from omegaconf import OmegaConf
|
4 |
-
import torch
|
5 |
-
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
|
6 |
-
from utils.utils import instantiate_from_config
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from einops import repeat
|
9 |
-
import torchvision.transforms as transforms
|
10 |
-
from pytorch_lightning import seed_everything
|
11 |
-
|
12 |
-
|
13 |
-
class Image2Video():
|
14 |
-
def __init__(self,result_dir='./tmp/',gpu_num=1) -> None:
|
15 |
-
self.
|
16 |
-
self.
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
model =
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
##
|
80 |
-
|
81 |
-
|
82 |
-
prompt_str=
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
print('done', video_path)
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
import torch
|
5 |
+
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
|
6 |
+
from utils.utils import instantiate_from_config
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from einops import repeat
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from pytorch_lightning import seed_everything
|
11 |
+
|
12 |
+
|
13 |
+
class Image2Video():
|
14 |
+
def __init__(self,result_dir='./tmp/',gpu_num=1,resolution='256_256') -> None:
|
15 |
+
self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1])) #hw
|
16 |
+
self.download_model()
|
17 |
+
|
18 |
+
self.result_dir = result_dir
|
19 |
+
if not os.path.exists(self.result_dir):
|
20 |
+
os.mkdir(self.result_dir)
|
21 |
+
ckpt_path='checkpoints/dynamicrafter_'+resolution.split('_')[1]+'_v1/model.ckpt'
|
22 |
+
config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml'
|
23 |
+
config = OmegaConf.load(config_file)
|
24 |
+
model_config = config.pop("model", OmegaConf.create())
|
25 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
26 |
+
model_list = []
|
27 |
+
for gpu_id in range(gpu_num):
|
28 |
+
model = instantiate_from_config(model_config)
|
29 |
+
# model = model.cuda(gpu_id)
|
30 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
31 |
+
model = load_model_checkpoint(model, ckpt_path)
|
32 |
+
model.eval()
|
33 |
+
model_list.append(model)
|
34 |
+
self.model_list = model_list
|
35 |
+
self.save_fps = 8
|
36 |
+
|
37 |
+
def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
38 |
+
seed_everything(seed)
|
39 |
+
transform = transforms.Compose([
|
40 |
+
transforms.Resize(min(self.resolution)),
|
41 |
+
transforms.CenterCrop(self.resolution),
|
42 |
+
])
|
43 |
+
torch.cuda.empty_cache()
|
44 |
+
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
45 |
+
start = time.time()
|
46 |
+
gpu_id=0
|
47 |
+
if steps > 60:
|
48 |
+
steps = 60
|
49 |
+
model = self.model_list[gpu_id]
|
50 |
+
model = model.cuda()
|
51 |
+
batch_size=1
|
52 |
+
channels = model.model.diffusion_model.out_channels
|
53 |
+
frames = model.temporal_length
|
54 |
+
h, w = self.resolution[0] // 8, self.resolution[1] // 8
|
55 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
56 |
+
|
57 |
+
# text cond
|
58 |
+
text_emb = model.get_learned_conditioning([prompt])
|
59 |
+
|
60 |
+
# img cond
|
61 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
62 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
63 |
+
|
64 |
+
image_tensor_resized = transform(img_tensor) #3,h,w
|
65 |
+
videos = image_tensor_resized.unsqueeze(0) # bchw
|
66 |
+
|
67 |
+
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
|
68 |
+
|
69 |
+
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
70 |
+
|
71 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
|
72 |
+
img_emb = model.image_proj_model(cond_images)
|
73 |
+
|
74 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
75 |
+
|
76 |
+
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
77 |
+
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
78 |
+
|
79 |
+
## inference
|
80 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
81 |
+
## b,samples,c,t,h,w
|
82 |
+
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
|
83 |
+
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
|
84 |
+
prompt_str=prompt_str[:40]
|
85 |
+
if len(prompt_str) == 0:
|
86 |
+
prompt_str = 'empty_prompt'
|
87 |
+
|
88 |
+
save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
|
89 |
+
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
|
90 |
+
model = model.cpu()
|
91 |
+
return os.path.join(self.result_dir, f"{prompt_str}.mp4")
|
92 |
+
|
93 |
+
def download_model(self):
|
94 |
+
REPO_ID = 'Doubiiu/DynamiCrafter'
|
95 |
+
filename_list = ['model.ckpt']
|
96 |
+
if not os.path.exists('./checkpoints/dynamicrafter_'+str(self.resolution[1])+'_v1/'):
|
97 |
+
os.makedirs('./dynamicrafter_'+str(self.resolution[1])+'_v1/')
|
98 |
+
for filename in filename_list:
|
99 |
+
local_file = os.path.join('./checkpoints/dynamicrafter_'+str(self.resolution[1])+'_v1/', filename)
|
100 |
+
if not os.path.exists(local_file):
|
101 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_'+str(self.resolution[1])+'_v1/', local_dir_use_symlinks=False)
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
i2v = Image2Video()
|
105 |
+
video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
|
106 |
print('done', video_path)
|
scripts/run.sh
CHANGED
@@ -1,25 +1,61 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
-
ckpt=
|
4 |
-
config=
|
5 |
|
6 |
-
prompt_dir=
|
7 |
res_dir="results"
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
--ckpt_path $ckpt \
|
12 |
--config $config \
|
13 |
--savedir $res_dir/$name \
|
14 |
--n_samples 1 \
|
15 |
-
--bs 1 --height
|
16 |
--unconditional_guidance_scale 7.5 \
|
17 |
--ddim_steps 50 \
|
18 |
--ddim_eta 1.0 \
|
19 |
--prompt_dir $prompt_dir \
|
20 |
--text_input \
|
21 |
--video_length 16 \
|
22 |
-
--frame_stride
|
|
|
|
|
|
|
23 |
|
24 |
## multi-cond CFG: the <unconditional_guidance_scale> is s_txt, <cfg_img> is s_img
|
25 |
-
#--multiple_cond_cfg --cfg_img 7.5
|
|
|
|
1 |
+
version=$1 ##1024, 512, 256
|
2 |
+
seed=123
|
3 |
+
name=dynamicrafter_$1_seed${seed}
|
4 |
|
5 |
+
ckpt=checkpoints/dynamicrafter_$1_v1/model.ckpt
|
6 |
+
config=configs/inference_$1_v1.0.yaml
|
7 |
|
8 |
+
prompt_dir=prompts/$1/
|
9 |
res_dir="results"
|
10 |
|
11 |
+
if [ "$1" == "256" ]; then
|
12 |
+
H=256
|
13 |
+
FS=3 ## This model adopts frame stride=3, range recommended: 1-6 (larger value -> larger motion)
|
14 |
+
elif [ "$1" == "512" ]; then
|
15 |
+
H=320
|
16 |
+
FS=24 ## This model adopts FPS=24, range recommended: 15-30 (smaller value -> larger motion)
|
17 |
+
elif [ "$1" == "1024" ]; then
|
18 |
+
H=576
|
19 |
+
FS=10 ## This model adopts FPS=10, range recommended: 15-5 (smaller value -> larger motion)
|
20 |
+
else
|
21 |
+
echo "Invalid input. Please enter 256, 512, or 1024."
|
22 |
+
exit 1
|
23 |
+
fi
|
24 |
+
|
25 |
+
if [ "$1" == "256" ]; then
|
26 |
+
CUDA_VISIBLE_DEVICES=2 python3 scripts/evaluation/inference.py \
|
27 |
+
--seed ${seed} \
|
28 |
+
--ckpt_path $ckpt \
|
29 |
+
--config $config \
|
30 |
+
--savedir $res_dir/$name \
|
31 |
+
--n_samples 1 \
|
32 |
+
--bs 1 --height ${H} --width $1 \
|
33 |
+
--unconditional_guidance_scale 7.5 \
|
34 |
+
--ddim_steps 50 \
|
35 |
+
--ddim_eta 1.0 \
|
36 |
+
--prompt_dir $prompt_dir \
|
37 |
+
--text_input \
|
38 |
+
--video_length 16 \
|
39 |
+
--frame_stride ${FS}
|
40 |
+
else
|
41 |
+
CUDA_VISIBLE_DEVICES=2 python3 scripts/evaluation/inference.py \
|
42 |
+
--seed ${seed} \
|
43 |
--ckpt_path $ckpt \
|
44 |
--config $config \
|
45 |
--savedir $res_dir/$name \
|
46 |
--n_samples 1 \
|
47 |
+
--bs 1 --height ${H} --width $1 \
|
48 |
--unconditional_guidance_scale 7.5 \
|
49 |
--ddim_steps 50 \
|
50 |
--ddim_eta 1.0 \
|
51 |
--prompt_dir $prompt_dir \
|
52 |
--text_input \
|
53 |
--video_length 16 \
|
54 |
+
--frame_stride ${FS} \
|
55 |
+
--timestep_spacing 'uniform_trailing' --guidance_rescale 0.7 --perframe_ae
|
56 |
+
fi
|
57 |
+
|
58 |
|
59 |
## multi-cond CFG: the <unconditional_guidance_scale> is s_txt, <cfg_img> is s_img
|
60 |
+
#--multiple_cond_cfg --cfg_img 7.5
|
61 |
+
#--loop
|
scripts/run_mp.sh
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version=$1 ##1024, 512, 256
|
2 |
+
seed=123
|
3 |
+
|
4 |
+
name=dynamicrafter_$1_mp_seed${seed}
|
5 |
+
|
6 |
+
ckpt=checkpoints/dynamicrafter_$1_v1/model.ckpt
|
7 |
+
config=configs/inference_$1_v1.0.yaml
|
8 |
+
|
9 |
+
prompt_dir=prompts/$1/
|
10 |
+
res_dir="results"
|
11 |
+
|
12 |
+
if [ "$1" == "256" ]; then
|
13 |
+
H=256
|
14 |
+
FS=3 ## This model adopts frame stride=3
|
15 |
+
elif [ "$1" == "512" ]; then
|
16 |
+
H=320
|
17 |
+
FS=24 ## This model adopts FPS=24
|
18 |
+
elif [ "$1" == "1024" ]; then
|
19 |
+
H=576
|
20 |
+
FS=10 ## This model adopts FPS=10
|
21 |
+
else
|
22 |
+
echo "Invalid input. Please enter 256, 512, or 1024."
|
23 |
+
exit 1
|
24 |
+
fi
|
25 |
+
|
26 |
+
# if [ "$1" == "256" ]; then
|
27 |
+
# CUDA_VISIBLE_DEVICES=2 python3 scripts/evaluation/inference.py \
|
28 |
+
# --seed 123 \
|
29 |
+
# --ckpt_path $ckpt \
|
30 |
+
# --config $config \
|
31 |
+
# --savedir $res_dir/$name \
|
32 |
+
# --n_samples 1 \
|
33 |
+
# --bs 1 --height ${H} --width $1 \
|
34 |
+
# --unconditional_guidance_scale 7.5 \
|
35 |
+
# --ddim_steps 50 \
|
36 |
+
# --ddim_eta 1.0 \
|
37 |
+
# --prompt_dir $prompt_dir \
|
38 |
+
# --text_input \
|
39 |
+
# --video_length 16 \
|
40 |
+
# --frame_stride ${FS}
|
41 |
+
# else
|
42 |
+
# CUDA_VISIBLE_DEVICES=2 python3 scripts/evaluation/inference.py \
|
43 |
+
# --seed 123 \
|
44 |
+
# --ckpt_path $ckpt \
|
45 |
+
# --config $config \
|
46 |
+
# --savedir $res_dir/$name \
|
47 |
+
# --n_samples 1 \
|
48 |
+
# --bs 1 --height ${H} --width $1 \
|
49 |
+
# --unconditional_guidance_scale 7.5 \
|
50 |
+
# --ddim_steps 50 \
|
51 |
+
# --ddim_eta 1.0 \
|
52 |
+
# --prompt_dir $prompt_dir \
|
53 |
+
# --text_input \
|
54 |
+
# --video_length 16 \
|
55 |
+
# --frame_stride ${FS} \
|
56 |
+
# --timestep_spacing 'uniform_trailing' --guidance_rescale 0.7
|
57 |
+
# fi
|
58 |
+
|
59 |
+
|
60 |
+
## multi-cond CFG: the <unconditional_guidance_scale> is s_txt, <cfg_img> is s_img
|
61 |
+
#--multiple_cond_cfg --cfg_img 7.5
|
62 |
+
#--loop
|
63 |
+
|
64 |
+
## inference using single node with multi-GPUs:
|
65 |
+
if [ "$1" == "256" ]; then
|
66 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch \
|
67 |
+
--nproc_per_node=8 --nnodes=1 --master_addr=127.0.0.1 --master_port=23456 --node_rank=0 \
|
68 |
+
scripts/evaluation/ddp_wrapper.py \
|
69 |
+
--module 'inference' \
|
70 |
+
--seed ${seed} \
|
71 |
+
--ckpt_path $ckpt \
|
72 |
+
--config $config \
|
73 |
+
--savedir $res_dir/$name \
|
74 |
+
--n_samples 1 \
|
75 |
+
--bs 1 --height ${H} --width $1 \
|
76 |
+
--unconditional_guidance_scale 7.5 \
|
77 |
+
--ddim_steps 50 \
|
78 |
+
--ddim_eta 1.0 \
|
79 |
+
--prompt_dir $prompt_dir \
|
80 |
+
--text_input \
|
81 |
+
--video_length 16 \
|
82 |
+
--frame_stride ${FS}
|
83 |
+
else
|
84 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch \
|
85 |
+
--nproc_per_node=8 --nnodes=1 --master_addr=127.0.0.1 --master_port=23456 --node_rank=0 \
|
86 |
+
scripts/evaluation/ddp_wrapper.py \
|
87 |
+
--module 'inference' \
|
88 |
+
--seed ${seed} \
|
89 |
+
--ckpt_path $ckpt \
|
90 |
+
--config $config \
|
91 |
+
--savedir $res_dir/$name \
|
92 |
+
--n_samples 1 \
|
93 |
+
--bs 1 --height ${H} --width $1 \
|
94 |
+
--unconditional_guidance_scale 7.5 \
|
95 |
+
--ddim_steps 50 \
|
96 |
+
--ddim_eta 1.0 \
|
97 |
+
--prompt_dir $prompt_dir \
|
98 |
+
--text_input \
|
99 |
+
--video_length 16 \
|
100 |
+
--frame_stride ${FS} \
|
101 |
+
--timestep_spacing 'uniform_trailing' --guidance_rescale 0.7 --perframe_ae
|
102 |
+
fi
|