Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from contextlib import contextmanager | |
import torch | |
import numpy as np | |
from einops import rearrange | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from lvdm.modules.networks.ae_modules import Encoder, Decoder | |
from lvdm.distributions import DiagonalGaussianDistribution | |
from utils.utils import instantiate_from_config | |
class AutoencoderKL(pl.LightningModule): | |
def __init__(self, | |
ddconfig, | |
lossconfig, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
test=False, | |
logdir=None, | |
input_dim=4, | |
test_args=None, | |
): | |
super().__init__() | |
self.image_key = image_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.loss = instantiate_from_config(lossconfig) | |
assert ddconfig["double_z"] | |
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
self.input_dim = input_dim | |
self.test = test | |
self.test_args = test_args | |
self.logdir = logdir | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels)==int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
if self.test: | |
self.init_test() | |
def init_test(self,): | |
self.test = True | |
save_dir = os.path.join(self.logdir, "test") | |
if 'ckpt' in self.test_args: | |
ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}' | |
self.root = os.path.join(save_dir, ckpt_name) | |
else: | |
self.root = save_dir | |
if 'test_subdir' in self.test_args: | |
self.root = os.path.join(save_dir, self.test_args.test_subdir) | |
self.root_zs = os.path.join(self.root, "zs") | |
self.root_dec = os.path.join(self.root, "reconstructions") | |
self.root_inputs = os.path.join(self.root, "inputs") | |
os.makedirs(self.root, exist_ok=True) | |
if self.test_args.save_z: | |
os.makedirs(self.root_zs, exist_ok=True) | |
if self.test_args.save_reconstruction: | |
os.makedirs(self.root_dec, exist_ok=True) | |
if self.test_args.save_input: | |
os.makedirs(self.root_inputs, exist_ok=True) | |
assert(self.test_args is not None) | |
self.test_maximum = getattr(self.test_args, 'test_maximum', None) | |
self.count = 0 | |
self.eval_metrics = {} | |
self.decodes = [] | |
self.save_decode_samples = 2048 | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu") | |
try: | |
self._cur_epoch = sd['epoch'] | |
sd = sd["state_dict"] | |
except: | |
self._cur_epoch = 'null' | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) | |
# self.load_state_dict(sd, strict=True) | |
print(f"Restored from {path}") | |
def encode(self, x, **kwargs): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z, **kwargs): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def forward(self, input, sample_posterior=True): | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
return dec, posterior | |
def get_input(self, batch, k): | |
x = batch[k] | |
if x.dim() == 5 and self.input_dim == 4: | |
b,c,t,h,w = x.shape | |
self.b = b | |
self.t = t | |
x = rearrange(x, 'b c t h w -> (b t) c h w') | |
return x | |
def training_step(self, batch, batch_idx, optimizer_idx): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
if optimizer_idx == 0: | |
# train encoder+decoder+logvar | |
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
return aeloss | |
if optimizer_idx == 1: | |
# train the discriminator | |
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="val") | |
self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
self.log_dict(log_dict_ae) | |
self.log_dict(log_dict_disc) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ | |
list(self.decoder.parameters())+ | |
list(self.quant_conv.parameters())+ | |
list(self.post_quant_conv.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
lr=lr, betas=(0.5, 0.9)) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, only_inputs=False, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
if not only_inputs: | |
xrec, posterior = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["samples"] = self.decode(torch.randn_like(posterior.sample())) | |
log["reconstructions"] = xrec | |
log["inputs"] = x | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
return x | |
class IdentityFirstStage(torch.nn.Module): | |
def __init__(self, *args, vq_interface=False, **kwargs): | |
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff | |
super().__init__() | |
def encode(self, x, *args, **kwargs): | |
return x | |
def decode(self, x, *args, **kwargs): | |
return x | |
def quantize(self, x, *args, **kwargs): | |
if self.vq_interface: | |
return x, None, [None, None, None] | |
return x | |
def forward(self, x, *args, **kwargs): | |
return x |