Spaces:
Runtime error
Fix Streamlit duplicate element ID error and enhance CyberOps Dashboard with graphical navigation
Browse filesResolved the StreamlitDuplicateElementId error by assigning unique keys to each file_uploader and other Streamlit elements.
- Added unique keys to all file_uploader elements to ensure distinct identifiers.
- Added an introductory section on the main frame to describe the purpose of the application.
- Introduced a graphical navigation system using Streamlit buttons within columns for better user experience.
- Data Upload: Allows users to upload CSV files.
- Data Visualization: Enables users to select columns for plotting.
- Analysis Tools: Provides options for combinatorial analysis.
- Maintained core functionality including file upload, data visualization, combinatorial analysis, and grouping/aggregation.
- Ensured compatibility with larger datasets using Dask for efficient data processing.
- Updated the sidebar to support new navigation features and options.
- Improved the user experience by providing a more reliable and error-free navigation system.
@@ -1,9 +1,100 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import dask.dataframe as dd
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from itertools import combinations
|
8 |
+
from collections import defaultdict
|
9 |
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
|
13 |
+
# Configuration from environment variables
|
14 |
+
FILE_UPLOAD_LIMIT = int(os.getenv('FILE_UPLOAD_LIMIT', 200))
|
15 |
+
EXECUTION_TIME_LIMIT = int(os.getenv('EXECUTION_TIME_LIMIT', 300))
|
16 |
+
RESOURCE_LIMIT = int(os.getenv('RESOURCE_LIMIT', 1024)) # in MB
|
17 |
+
DATA_DIR = os.getenv('DATA_DIR', './data')
|
18 |
+
CONFIG_FLAG = os.getenv('CONFIG_FLAG', 'default')
|
19 |
+
|
20 |
+
# Main application logic
|
21 |
+
def main():
|
22 |
+
st.title("CyberOps Dashboard")
|
23 |
+
|
24 |
+
# Sidebar for user inputs
|
25 |
+
st.sidebar.header("Options")
|
26 |
+
|
27 |
+
# Main frame for introduction and navigation
|
28 |
+
with st.container():
|
29 |
+
st.subheader("Welcome to CyberOps Dashboard")
|
30 |
+
st.write("""
|
31 |
+
The CyberOps Dashboard is designed to assist cybersecurity professionals in analyzing and visualizing data efficiently.
|
32 |
+
With this tool, you can upload CSV files, visualize data trends, and perform advanced data analysis.
|
33 |
+
""")
|
34 |
+
|
35 |
+
# Navigation section
|
36 |
+
st.subheader("Navigation")
|
37 |
+
st.write("Use the buttons below to navigate to different sections:")
|
38 |
+
col1, col2, col3 = st.columns(3)
|
39 |
+
|
40 |
+
with col1:
|
41 |
+
if st.button("Data Upload"):
|
42 |
+
uploaded_file = st.sidebar.file_uploader("Select a CSV file:", type=["csv"], key="file_uploader_data_upload")
|
43 |
+
|
44 |
+
with col2:
|
45 |
+
if st.button("Data Visualization"):
|
46 |
+
st.sidebar.selectbox('Select X-axis:', [], key="data_visualization_x")
|
47 |
+
st.sidebar.selectbox('Select Y-axis:', [], key="data_visualization_y")
|
48 |
+
|
49 |
+
with col3:
|
50 |
+
if st.button("Analysis Tools"):
|
51 |
+
st.sidebar.multiselect('Select columns for combinations:', [], key="analysis_tools_columns")
|
52 |
+
|
53 |
+
uploaded_file = st.sidebar.file_uploader("Select a CSV file:", type=["csv"], key="file_uploader_main")
|
54 |
+
|
55 |
+
if uploaded_file:
|
56 |
+
@st.cache_data
|
57 |
+
def load_csv(file):
|
58 |
+
return pd.read_csv(file)
|
59 |
+
|
60 |
+
@st.cache_data
|
61 |
+
def load_dask_csv(file):
|
62 |
+
return dd.read_csv(file)
|
63 |
+
|
64 |
+
if os.path.getsize(uploaded_file) < RESOURCE_LIMIT * 1024 * 1024:
|
65 |
+
df = load_csv(uploaded_file)
|
66 |
+
else:
|
67 |
+
df = load_dask_csv(uploaded_file)
|
68 |
+
|
69 |
+
if not df.empty:
|
70 |
+
st.write("Data Preview:")
|
71 |
+
st.dataframe(df.compute() if isinstance(df, dd.DataFrame) else df)
|
72 |
+
|
73 |
+
# Select columns for plotting
|
74 |
+
x_column = st.sidebar.selectbox('Select X-axis:', df.columns, key="x_column_plot")
|
75 |
+
y_column = st.sidebar.selectbox('Select Y-axis:', df.columns, key="y_column_plot")
|
76 |
+
|
77 |
+
# Plotting
|
78 |
+
fig, ax = plt.subplots()
|
79 |
+
ax.plot(df[x_column], df[y_column], marker='o')
|
80 |
+
ax.set_xlabel(x_column)
|
81 |
+
ax.set_ylabel(y_column)
|
82 |
+
ax.set_title(f"{y_column} vs {x_column}")
|
83 |
+
st.pyplot(fig)
|
84 |
+
|
85 |
+
# Combinatorial analysis
|
86 |
+
col_combinations = st.sidebar.multiselect('Select columns for combinations:', df.columns, key="col_combinations")
|
87 |
+
if col_combinations:
|
88 |
+
st.write("Column Combinations:")
|
89 |
+
comb = list(combinations(col_combinations, 2))
|
90 |
+
st.write(comb)
|
91 |
+
|
92 |
+
# Grouping and aggregation
|
93 |
+
group_by_column = st.sidebar.selectbox('Select column to group by:', df.columns, key="group_by_column")
|
94 |
+
if group_by_column:
|
95 |
+
grouped_df = df.groupby(group_by_column).agg(list)
|
96 |
+
st.write("Grouped Data:")
|
97 |
+
st.dataframe(grouped_df.compute() if isinstance(grouped_df, dd.DataFrame) else grouped_df)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|