Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import dask.dataframe as dd
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from itertools import combinations
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Configuration from environment variables
|
14 |
+
FILE_UPLOAD_LIMIT = int(os.getenv('FILE_UPLOAD_LIMIT', 200))
|
15 |
+
EXECUTION_TIME_LIMIT = int(os.getenv('EXECUTION_TIME_LIMIT', 300))
|
16 |
+
RESOURCE_LIMIT = int(os.getenv('RESOURCE_LIMIT', 1024)) # in MB
|
17 |
+
DATA_DIR = os.getenv('DATA_DIR', './data')
|
18 |
+
CONFIG_FLAG = os.getenv('CONFIG_FLAG', 'default')
|
19 |
+
|
20 |
+
# Main application logic
|
21 |
+
def main():
|
22 |
+
st.title("CyberOps Dashboard")
|
23 |
+
|
24 |
+
# Sidebar for user inputs
|
25 |
+
st.sidebar.header("Options")
|
26 |
+
|
27 |
+
# Option to select a CSV file
|
28 |
+
uploaded_file = st.sidebar.file_uploader("Select a CSV file:", type=["csv"])
|
29 |
+
|
30 |
+
if uploaded_file:
|
31 |
+
@st.cache_data
|
32 |
+
def load_csv(file):
|
33 |
+
return pd.read_csv(file)
|
34 |
+
|
35 |
+
@st.cache_data
|
36 |
+
def load_dask_csv(file):
|
37 |
+
return dd.read_csv(file)
|
38 |
+
|
39 |
+
if os.path.getsize(uploaded_file) < RESOURCE_LIMIT * 1024 * 1024:
|
40 |
+
df = load_csv(uploaded_file)
|
41 |
+
else:
|
42 |
+
df = load_dask_csv(uploaded_file)
|
43 |
+
|
44 |
+
if not df.empty:
|
45 |
+
st.write("Data Preview:")
|
46 |
+
st.dataframe(df.compute() if isinstance(df, dd.DataFrame) else df)
|
47 |
+
|
48 |
+
# Select columns for plotting
|
49 |
+
x_column = st.sidebar.selectbox('Select X-axis:', df.columns)
|
50 |
+
y_column = st.sidebar.selectbox('Select Y-axis:', df.columns)
|
51 |
+
|
52 |
+
# Plotting
|
53 |
+
fig, ax = plt.subplots()
|
54 |
+
ax.plot(df[x_column], df[y_column], marker='o')
|
55 |
+
ax.set_xlabel(x_column)
|
56 |
+
ax.set_ylabel(y_column)
|
57 |
+
ax.set_title(f"{y_column} vs {x_column}")
|
58 |
+
st.pyplot(fig)
|
59 |
+
|
60 |
+
# Combinatorial analysis
|
61 |
+
col_combinations = st.sidebar.multiselect('Select columns for combinations:', df.columns)
|
62 |
+
if col_combinations:
|
63 |
+
st.write("Column Combinations:")
|
64 |
+
comb = list(combinations(col_combinations, 2))
|
65 |
+
st.write(comb)
|
66 |
+
|
67 |
+
# Grouping and aggregation
|
68 |
+
group_by_column = st.sidebar.selectbox('Select column to group by:', df.columns)
|
69 |
+
if group_by_column:
|
70 |
+
grouped_df = df.groupby(group_by_column).agg(list)
|
71 |
+
st.write("Grouped Data:")
|
72 |
+
st.dataframe(grouped_df.compute() if isinstance(grouped_df, dd.DataFrame) else grouped_df)
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
main()
|