Dorjzodovsuren commited on
Commit
8b42dad
1 Parent(s): e963fe2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -60
app.py CHANGED
@@ -1,64 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ # def respond(
11
+ # message,
12
+ # history: list[tuple[str, str]],
13
+ # system_message,
14
+ # max_tokens,
15
+ # temperature,
16
+ # top_p,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
+
20
+ # for val in history:
21
+ # if val[0]:
22
+ # messages.append({"role": "user", "content": val[0]})
23
+ # if val[1]:
24
+ # messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ # messages.append({"role": "user", "content": message})
27
+
28
+ # response = ""
29
+
30
+ # for message in client.chat_completion(
31
+ # messages,
32
+ # max_tokens=max_tokens,
33
+ # stream=True,
34
+ # temperature=temperature,
35
+ # top_p=top_p,
36
+ # ):
37
+ # token = message.choices[0].delta.content
38
+
39
+ # response += token
40
+ # yield response
41
+
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+ import torch
67
  import gradio as gr
68
+ from threading import Thread
69
+ from peft import PeftModel, PeftConfig
70
+ from unsloth import FastLanguageModel
71
+ from transformers import TextStreamer
72
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
73
+
74
+ max_seq_length = 1024
75
+ dtype = torch.float16
76
+ load_in_4bit = True
77
+ model, tokenizer = FastLanguageModel.from_pretrained(
78
+ model_name = "Dorjzodovsuren/Mongolian_Llama3-v0.1",
79
+ max_seq_length = max_seq_length,
80
+ dtype = dtype,
81
+ load_in_4bit = load_in_4bit,
82
+ # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  )
84
 
85
+ EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
86
+
87
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
88
+
89
+ ### Instruction:
90
+ {}
91
+
92
+ ### Input:
93
+ {}
94
+
95
+ ### Response:
96
+ {}"""
97
+
98
+
99
+ # Enable native 2x faster inference
100
+ FastLanguageModel.for_inference(model)
101
+
102
+ # Create a text streamer
103
+ text_streamer = TextStreamer(tokenizer, skip_prompt=False,skip_special_tokens=True)
104
+
105
+ # Get the device based on GPU availability
106
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
107
+
108
+ # Move model into device
109
+ model = model.to(device)
110
+
111
+ class StopOnTokens(StoppingCriteria):
112
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
113
+ stop_ids = [29, 0]
114
+ for stop_id in stop_ids:
115
+ if input_ids[0][-1] == stop_id:
116
+ return True
117
+ return False
118
+
119
+ # Current implementation does not support conversation based on history.
120
+ # Highly recommend to experiment on various hyper parameters to compare qualities.
121
+ def predict(message, history):
122
+ stop = StopOnTokens()
123
+ messages = alpaca_prompt.format(
124
+ message,
125
+ "",
126
+ "",
127
+ )
128
+
129
+ model_inputs = tokenizer([messages], return_tensors="pt").to(device)
130
+
131
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
132
+ generate_kwargs = dict(
133
+ model_inputs,
134
+ streamer=streamer,
135
+ max_new_tokens=1024,
136
+ top_p=0.95,
137
+ temperature=0.001,
138
+ repetition_penalty=1.1,
139
+ stopping_criteria=StoppingCriteriaList([stop])
140
+ )
141
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
142
+ t.start()
143
+
144
+ partial_message = ""
145
+ for new_token in streamer:
146
+ if new_token != '<':
147
+ partial_message += new_token
148
+ yield partial_message
149
 
150
+ gr.ChatInterface(predict).launch(show_api=True)