Dor-Hac's picture
Upload app.py with huggingface_hub
ae08ded verified
raw
history blame contribute delete
930 Bytes
""""
We are going to deploy our model using Gradio.
"""
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Load the model
model = load_model('melanoma_cancer_model.h5')
# Define the function to make predictions
def classify_image(img):
img = np.expand_dims(img, axis=0)
# Resize image
resized_img = tf.image.resize(img, [160, 160])
# Predict the image
prediction = model.predict(resized_img)[0][0]
# Convert to float value
prediction = float(prediction)
# return dictionary for Gradio
return {"melanoma": prediction, "not melanoma": 1 - prediction}
# Launch the Gradio interface
gr.Interface(fn=classify_image, inputs='image', outputs="label").launch()
# Launch shareble Gradio interface
# gr.Interface(fn=classify_image, inputs='image', outputs="label").launch(share=True)