Spaces:
Sleeping
Sleeping
| import os | |
| import shutil | |
| import subprocess | |
| import gradio as gr | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub import whoami | |
| from huggingface_hub import ModelCard | |
| from textwrap import dedent | |
| api = HfApi() | |
| def process_model(model_id, q_method, hf_token): | |
| MODEL_NAME = model_id.split('/')[-1] | |
| fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" | |
| username = whoami(hf_token)["name"] | |
| snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) | |
| print("Model downloaded successully!") | |
| fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" | |
| subprocess.run(fp16_conversion, shell=True) | |
| print("Model converted to fp16 successully!") | |
| qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" | |
| quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" | |
| subprocess.run(quantise_ggml, shell=True) | |
| print("Quantised successfully!") | |
| # Create empty repo | |
| repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF" | |
| repo_url = create_repo( | |
| repo_id = repo_id, | |
| repo_type="model", | |
| exist_ok=True, | |
| token=hf_token | |
| ) | |
| print("Empty repo created successfully!") | |
| card = ModelCard.load(model_id) | |
| card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"] | |
| card.text = dedent( | |
| f""" | |
| # {upload_repo} | |
| This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp. | |
| Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. | |
| ## Use with llama.cpp | |
| ```bash | |
| brew install ggerganov/ggerganov/llama.cpp | |
| ``` | |
| ```bash | |
| llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is " | |
| ``` | |
| """ | |
| ) | |
| card.save(os.path.join(MODEL_NAME, "README-new.md")) | |
| api.upload_file( | |
| path_or_fileobj=qtype, | |
| path_in_repo=qtype.split("/")[-1], | |
| repo_id=repo_id, | |
| repo_type="model", | |
| ) | |
| api.upload_file( | |
| path_or_fileobj=f"{MODEL_NAME}/README-new.md", | |
| path_in_repo=README.md, | |
| repo_id=repo_id, | |
| repo_type="model", | |
| ) | |
| print("Uploaded successfully!") | |
| shutil.rmtree(MODEL_NAME) | |
| print("Folder cleaned up successfully!") | |
| return ( | |
| f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
| "llama.png", | |
| ) | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| gr.Textbox( | |
| lines=1, | |
| label="Hub Model ID", | |
| info="Model repo ID" | |
| ), | |
| gr.Dropdown( | |
| ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
| label="Quantization Method", | |
| info="GGML quantisation type" | |
| ), | |
| gr.Textbox( | |
| lines=1, | |
| label="HF Write Token", | |
| info="https://hf.co/settings/token" | |
| ) | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| gr.Image(show_label=False), | |
| ], | |
| title="Create your own GGUF Quants!", | |
| description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.", | |
| article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>", | |
| ) | |
| # Launch the interface | |
| iface.launch(debug=True) |