Spaces:
Runtime error
Runtime error
Update app/tapas.py
Browse files- app/tapas.py +99 -0
app/tapas.py
CHANGED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
+
|
5 |
+
p = re.compile('\d+(\.\d+)?')
|
6 |
+
|
7 |
+
def load_model_and_tokenizer():
|
8 |
+
"""
|
9 |
+
Load
|
10 |
+
"""
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("Meena/table-question-answering-tapas")
|
12 |
+
model = AutoModelForTableQuestionAnswering.from_pretrained("Meena/table-question-answering-tapas")
|
13 |
+
|
14 |
+
# Return tokenizer and model
|
15 |
+
return tokenizer, model
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_inputs(table, queries, tokenizer):
|
19 |
+
"""
|
20 |
+
Convert dictionary into data frame and tokenize inputs given queries.
|
21 |
+
"""
|
22 |
+
table = table.astype('str').head(100)
|
23 |
+
inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt")
|
24 |
+
return table, inputs
|
25 |
+
|
26 |
+
|
27 |
+
def generate_predictions(inputs, model, tokenizer):
|
28 |
+
"""
|
29 |
+
Generate predictions for some tokenized input.
|
30 |
+
"""
|
31 |
+
# Generate model results
|
32 |
+
outputs = model(**inputs)
|
33 |
+
|
34 |
+
# Convert logit outputs into predictions for table cells and aggregation operators
|
35 |
+
predicted_table_cell_coords, predicted_aggregation_operators = tokenizer.convert_logits_to_predictions(
|
36 |
+
inputs,
|
37 |
+
outputs.logits.detach(),
|
38 |
+
outputs.logits_aggregation.detach()
|
39 |
+
)
|
40 |
+
|
41 |
+
# Return values
|
42 |
+
return predicted_table_cell_coords, predicted_aggregation_operators
|
43 |
+
|
44 |
+
def postprocess_predictions(predicted_aggregation_operators, predicted_table_cell_coords, table):
|
45 |
+
"""
|
46 |
+
Compute the predicted operation and nicely structure the answers.
|
47 |
+
"""
|
48 |
+
# Process predicted aggregation operators
|
49 |
+
aggregation_operators = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"}
|
50 |
+
aggregation_predictions_string = [aggregation_operators[x] for x in predicted_aggregation_operators]
|
51 |
+
# Process predicted table cell coordinates
|
52 |
+
answers = []
|
53 |
+
for agg, coordinates in zip(predicted_aggregation_operators, predicted_table_cell_coords):
|
54 |
+
if len(coordinates) == 1:
|
55 |
+
# 1 cell
|
56 |
+
answers.append(table.iat[coordinates[0]])
|
57 |
+
else:
|
58 |
+
# > 1 cell
|
59 |
+
cell_values = []
|
60 |
+
for coordinate in coordinates:
|
61 |
+
cell_values.append(table.iat[coordinate])
|
62 |
+
answers.append(", ".join(cell_values))
|
63 |
+
|
64 |
+
# Return values
|
65 |
+
return aggregation_predictions_string, answers
|
66 |
+
|
67 |
+
|
68 |
+
def show_answers(queries, answers, aggregation_predictions_string):
|
69 |
+
"""
|
70 |
+
Visualize the postprocessed answers.
|
71 |
+
"""
|
72 |
+
agg = {"NONE": lambda x: x, "SUM" : lambda x: sum(x), "AVERAGE": lambda x: (sum(x) / len(x)), "COUNT": lambda x: len(x)}
|
73 |
+
results = []
|
74 |
+
for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
|
75 |
+
print(query)
|
76 |
+
if predicted_agg == "NONE":
|
77 |
+
print("Predicted answer: " + answer)
|
78 |
+
else:
|
79 |
+
if all([not p.match(val) == None for val in answer.split(', ')]):
|
80 |
+
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](list(map(float, answer.split(','))))))
|
81 |
+
result = str(agg[predicted_agg](list(map(float, answer.split(',')))))
|
82 |
+
elif predicted_agg == "COUNT":
|
83 |
+
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](answer.split(','))))
|
84 |
+
result = str(agg[predicted_agg](answer.split(',')))
|
85 |
+
else:
|
86 |
+
result = predicted_agg + " > " + answer
|
87 |
+
results.append(result)
|
88 |
+
return results
|
89 |
+
|
90 |
+
def execute_query(query, table):
|
91 |
+
"""
|
92 |
+
Invoke the TAPAS model.
|
93 |
+
"""
|
94 |
+
queries = [query]
|
95 |
+
tokenizer, model = load_model_and_tokenizer()
|
96 |
+
table, inputs = prepare_inputs(table, queries, tokenizer)
|
97 |
+
predicted_table_cell_coords, predicted_aggregation_operators = generate_predictions(inputs, model, tokenizer)
|
98 |
+
aggregation_predictions_string, answers = postprocess_predictions(predicted_aggregation_operators, predicted_table_cell_coords, table)
|
99 |
+
return show_answers(queries, answers, aggregation_predictions_string)
|