|
import torch |
|
from PIL import Image |
|
import struct |
|
import numpy as np |
|
from fcbh.cli_args import args, LatentPreviewMethod |
|
from fcbh.taesd.taesd import TAESD |
|
import folder_paths |
|
import fcbh.utils |
|
|
|
MAX_PREVIEW_RESOLUTION = 512 |
|
|
|
class LatentPreviewer: |
|
def decode_latent_to_preview(self, x0): |
|
pass |
|
|
|
def decode_latent_to_preview_image(self, preview_format, x0): |
|
preview_image = self.decode_latent_to_preview(x0) |
|
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) |
|
|
|
class TAESDPreviewerImpl(LatentPreviewer): |
|
def __init__(self, taesd): |
|
self.taesd = taesd |
|
|
|
def decode_latent_to_preview(self, x0): |
|
x_sample = self.taesd.decoder(x0[:1])[0].detach() |
|
|
|
x_sample = x_sample.sub(0.5).mul(2) |
|
|
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) |
|
x_sample = x_sample.astype(np.uint8) |
|
|
|
preview_image = Image.fromarray(x_sample) |
|
return preview_image |
|
|
|
|
|
class Latent2RGBPreviewer(LatentPreviewer): |
|
def __init__(self, latent_rgb_factors): |
|
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu") |
|
|
|
def decode_latent_to_preview(self, x0): |
|
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors |
|
|
|
latents_ubyte = (((latent_image + 1) / 2) |
|
.clamp(0, 1) |
|
.mul(0xFF) |
|
.byte()).cpu() |
|
|
|
return Image.fromarray(latents_ubyte.numpy()) |
|
|
|
|
|
def get_previewer(device, latent_format): |
|
previewer = None |
|
method = args.preview_method |
|
if method != LatentPreviewMethod.NoPreviews: |
|
|
|
taesd_decoder_path = None |
|
if latent_format.taesd_decoder_name is not None: |
|
taesd_decoder_path = next( |
|
(fn for fn in folder_paths.get_filename_list("vae_approx") |
|
if fn.startswith(latent_format.taesd_decoder_name)), |
|
"" |
|
) |
|
taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) |
|
|
|
if method == LatentPreviewMethod.Auto: |
|
method = LatentPreviewMethod.Latent2RGB |
|
if taesd_decoder_path: |
|
method = LatentPreviewMethod.TAESD |
|
|
|
if method == LatentPreviewMethod.TAESD: |
|
if taesd_decoder_path: |
|
taesd = TAESD(None, taesd_decoder_path).to(device) |
|
previewer = TAESDPreviewerImpl(taesd) |
|
else: |
|
print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) |
|
|
|
if previewer is None: |
|
if latent_format.latent_rgb_factors is not None: |
|
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) |
|
return previewer |
|
|
|
def prepare_callback(model, steps, x0_output_dict=None): |
|
preview_format = "JPEG" |
|
if preview_format not in ["JPEG", "PNG"]: |
|
preview_format = "JPEG" |
|
|
|
previewer = get_previewer(model.load_device, model.model.latent_format) |
|
|
|
pbar = fcbh.utils.ProgressBar(steps) |
|
def callback(step, x0, x, total_steps): |
|
if x0_output_dict is not None: |
|
x0_output_dict["x0"] = x0 |
|
|
|
preview_bytes = None |
|
if previewer: |
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) |
|
pbar.update_absolute(step + 1, total_steps, preview_bytes) |
|
return callback |
|
|
|
|