drslimm commited on
Commit
01da6c1
·
1 Parent(s): e3f227c

add modules

Browse files
Files changed (1) hide show
  1. bangalore_score.py +9 -7
bangalore_score.py CHANGED
@@ -28,29 +28,31 @@ year={2020}
28
 
29
  # TODO: Add description of the module here
30
  _DESCRIPTION = """\
31
- This new module is designed to solve this great ML task and is crafted with a lot of care.
32
  """
33
 
34
 
35
  # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
- Calculates how good are predictions given some references, using certain scores
38
  Args:
39
  predictions: list of predictions to score. Each predictions
40
  should be a string with tokens separated by spaces.
41
  references: list of reference for each prediction. Each
42
  reference should be a string with tokens separated by spaces.
43
  Returns:
44
- accuracy: description of the first score,
45
- another_score: description of the second score,
 
 
46
  Examples:
47
  Examples should be written in doctest format, and should illustrate how
48
  to use the function.
49
 
50
- >>> my_new_module = evaluate.load("my_new_module")
51
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
52
  >>> print(results)
53
- {'accuracy': 1.0}
54
  """
55
 
56
  # TODO: Define external resources urls if needed
 
28
 
29
  # TODO: Add description of the module here
30
  _DESCRIPTION = """\
31
+ Computing metrics on generated tabular data
32
  """
33
 
34
 
35
  # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
+ Computing loss and accuracy on generated tabular data
38
  Args:
39
  predictions: list of predictions to score. Each predictions
40
  should be a string with tokens separated by spaces.
41
  references: list of reference for each prediction. Each
42
  reference should be a string with tokens separated by spaces.
43
  Returns:
44
+ bleu: bleu score (for normalized data)
45
+ rougeL: rougeL score (for normalized data)
46
+ levenstein_distance: levenstein distance (for normalized data)
47
+ format_score: score for correctness of generated output format
48
  Examples:
49
  Examples should be written in doctest format, and should illustrate how
50
  to use the function.
51
 
52
+ >>> my_new_module = evaluate.load("DoctorSlimm/bangalore_score")
53
+ >>> results = my_new_module.compute(references=[str, str], predictions=[str, str])
54
  >>> print(results)
55
+ {'bleu': 0.5, 'rougeL': 0.5, 'levenstein_distance': 0.5, 'format_score': 0.5}
56
  """
57
 
58
  # TODO: Define external resources urls if needed