Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
from ultralytics import ASSETS, YOLO
|
| 5 |
+
import tempfile
|
| 6 |
+
import numpy as np
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
def load_model(model_name):
|
| 10 |
+
"""Loads the specified YOLO model for either segmentation or detection."""
|
| 11 |
+
if model_name == "yolov9c-seg":
|
| 12 |
+
model_path = "yolov9c-seg.pt"
|
| 13 |
+
elif model_name == "yolov9e-seg":
|
| 14 |
+
model_path = "yolov9e-seg.pt"
|
| 15 |
+
elif model_name == "yolov9c":
|
| 16 |
+
model_path = "yolov9c.pt"
|
| 17 |
+
elif model_name == "yolov9e":
|
| 18 |
+
model_path = "yolov9e.pt"
|
| 19 |
+
else:
|
| 20 |
+
raise ValueError(f"Invalid model name: {model_name}")
|
| 21 |
+
|
| 22 |
+
return YOLO(model_path)
|
| 23 |
+
|
| 24 |
+
def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None):
|
| 25 |
+
"""Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds."""
|
| 26 |
+
if task == "segmentation":
|
| 27 |
+
if not model_name:
|
| 28 |
+
model_name = "yolov9c-seg"
|
| 29 |
+
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
|
| 30 |
+
raise ValueError(f"Invalid model name for segmentation: {model_name}")
|
| 31 |
+
elif task == "detection":
|
| 32 |
+
if not model_name:
|
| 33 |
+
model_name = "yolov9c"
|
| 34 |
+
elif model_name not in ["yolov9c", "yolov9e"]:
|
| 35 |
+
raise ValueError(f"Invalid model name for detection: {model_name}")
|
| 36 |
+
else:
|
| 37 |
+
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
|
| 38 |
+
|
| 39 |
+
model = load_model(model_name)
|
| 40 |
+
results = model.predict(
|
| 41 |
+
source=img,
|
| 42 |
+
conf=conf_threshold,
|
| 43 |
+
iou=iou_threshold,
|
| 44 |
+
show_labels=True,
|
| 45 |
+
show_conf=True,
|
| 46 |
+
imgsz=640,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
for r in results:
|
| 50 |
+
im_array = r.plot()
|
| 51 |
+
im = Image.fromarray(im_array[..., ::-1])
|
| 52 |
+
|
| 53 |
+
return im
|
| 54 |
+
|
| 55 |
+
def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name):
|
| 56 |
+
|
| 57 |
+
return predict_image(img, conf_threshold, iou_threshold, task, model_name)
|
| 58 |
+
|
| 59 |
+
image_iface = gr.Interface(
|
| 60 |
+
fn=predict_image_with_task,
|
| 61 |
+
inputs=[
|
| 62 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 63 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
| 64 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
| 65 |
+
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
|
| 66 |
+
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
|
| 67 |
+
],
|
| 68 |
+
outputs=gr.Image(type="pil", label="Result"),
|
| 69 |
+
title="X509",
|
| 70 |
+
description="Upload images for inference. Choose task and corresponding model.",
|
| 71 |
+
examples=[
|
| 72 |
+
["cars.jpg", 0.25, 0.45, "detection", "yolov9c"],
|
| 73 |
+
],
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None):
|
| 77 |
+
"""Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds."""
|
| 78 |
+
if task == "segmentation":
|
| 79 |
+
if not model_name:
|
| 80 |
+
model_name = "yolov9c-seg"
|
| 81 |
+
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
|
| 82 |
+
raise ValueError(f"Invalid model name for segmentation: {model_name}")
|
| 83 |
+
elif task == "detection":
|
| 84 |
+
if not model_name:
|
| 85 |
+
model_name = "yolov9c"
|
| 86 |
+
elif model_name not in ["yolov9c", "yolov9e"]:
|
| 87 |
+
raise ValueError(f"Invalid model name for detection: {model_name}")
|
| 88 |
+
else:
|
| 89 |
+
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
|
| 90 |
+
|
| 91 |
+
model = load_model(model_name)
|
| 92 |
+
cap = cv2.VideoCapture(video_path)
|
| 93 |
+
|
| 94 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 95 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 96 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 97 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 98 |
+
|
| 99 |
+
temp_video_path = tempfile.mktemp(suffix=".mp4")
|
| 100 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
|
| 101 |
+
|
| 102 |
+
frame_count = 0
|
| 103 |
+
start_time = time.time()
|
| 104 |
+
|
| 105 |
+
while cap.isOpened():
|
| 106 |
+
ret, frame = cap.read()
|
| 107 |
+
if not ret:
|
| 108 |
+
break
|
| 109 |
+
frame_count += 1
|
| 110 |
+
|
| 111 |
+
elapsed_time = time.time() - start_time
|
| 112 |
+
current_fps = frame_count / elapsed_time
|
| 113 |
+
|
| 114 |
+
pil_img = Image.fromarray(frame[..., ::-1])
|
| 115 |
+
results = model.predict(
|
| 116 |
+
source=pil_img,
|
| 117 |
+
conf=conf_threshold,
|
| 118 |
+
iou=iou_threshold,
|
| 119 |
+
show_labels=True,
|
| 120 |
+
show_conf=True,
|
| 121 |
+
imgsz=640,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
for r in results:
|
| 125 |
+
im_array = r.plot()
|
| 126 |
+
processed_frame = Image.fromarray(im_array[..., ::-1])
|
| 127 |
+
frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
| 128 |
+
|
| 129 |
+
cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 130 |
+
|
| 131 |
+
out.write(frame)
|
| 132 |
+
|
| 133 |
+
cap.release()
|
| 134 |
+
out.release()
|
| 135 |
+
|
| 136 |
+
return temp_video_path
|
| 137 |
+
|
| 138 |
+
def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name):
|
| 139 |
+
|
| 140 |
+
return predict_video(video_path, conf_threshold, iou_threshold, task, model_name)
|
| 141 |
+
|
| 142 |
+
video_iface = gr.Interface(
|
| 143 |
+
fn=predict_video_with_task,
|
| 144 |
+
inputs=[
|
| 145 |
+
gr.Video(label="Upload Video", interactive=True),
|
| 146 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
| 147 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
| 148 |
+
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
|
| 149 |
+
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
|
| 150 |
+
],
|
| 151 |
+
outputs=gr.File(label="Result"),
|
| 152 |
+
title="X509",
|
| 153 |
+
description="Upload video for inference. Choose task and corresponding model.",
|
| 154 |
+
examples=[
|
| 155 |
+
["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov9c"],
|
| 156 |
+
]
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
|
| 160 |
+
|
| 161 |
+
if __name__ == '__main__':
|
| 162 |
+
production.launch()
|