DocUA's picture
add .env
2929135
raw
history blame
3.35 kB
# tests/conftest.py
import pytest
from datetime import datetime
from typing import Dict
from src.config.settings import Settings
from src.models.state import HospitalState, TaskType, PriorityLevel
@pytest.fixture
def mock_settings():
"""Fixture for test settings"""
return {
"OPENAI_API_KEY": "test-api-key",
"MODEL_NAME": "gpt-4o-mini-2024-07-18",
"MODEL_TEMPERATURE": 0,
"MEMORY_TYPE": "sqlite",
"MEMORY_URI": ":memory:",
"LOG_LEVEL": "DEBUG"
}
@pytest.fixture
def mock_llm_response():
"""Fixture for mock LLM responses"""
return {
"input_analysis": {
"task_type": TaskType.PATIENT_FLOW,
"priority": PriorityLevel.HIGH,
"department": "ER",
"context": {"urgent": True}
},
"patient_flow": {
"recommendations": ["Optimize bed allocation", "Increase staff in ER"],
"metrics": {"waiting_time": 25, "bed_utilization": 0.85}
},
"quality_monitoring": {
"satisfaction_score": 8.5,
"compliance_rate": 0.95,
"recommendations": ["Maintain current standards"]
}
}
@pytest.fixture
def mock_hospital_state() -> HospitalState:
"""Fixture for mock hospital state"""
return {
"messages": [],
"current_task": TaskType.GENERAL,
"priority_level": PriorityLevel.MEDIUM,
"department": None,
"metrics": {
"patient_flow": {
"total_beds": 100,
"occupied_beds": 75,
"waiting_patients": 10,
"average_wait_time": 30.0
},
"resources": {
"equipment_availability": {"ventilators": True},
"supply_levels": {"masks": 0.8},
"resource_utilization": 0.75
},
"quality": {
"patient_satisfaction": 8.5,
"compliance_rate": 0.95,
"incident_count": 2
},
"staffing": {
"total_staff": 200,
"available_staff": {"doctors": 20, "nurses": 50},
"overtime_hours": 45.5
}
},
"analysis": None,
"context": {},
"timestamp": datetime.now(),
"thread_id": "test-thread-id"
}
@pytest.fixture
def mock_tools_response():
"""Fixture for mock tool responses"""
return {
"patient_tools": {
"wait_time": 30.5,
"bed_capacity": {"available": 25, "total": 100},
"discharge_time": datetime.now()
},
"resource_tools": {
"supply_levels": {"critical": [], "reorder": ["masks"]},
"equipment_status": {"available": ["xray"], "in_use": ["mri"]}
}
}
@pytest.fixture
def mock_error_response():
"""Fixture for mock error responses"""
return {
"validation_error": {
"code": "INVALID_INPUT",
"message": "Invalid input parameters",
"details": {"field": "department", "issue": "required"}
},
"processing_error": {
"code": "PROCESSING_FAILED",
"message": "Failed to process request",
"details": {"step": "analysis", "reason": "timeout"}
}
}# Test configuration implementation