|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
import warnings |
|
|
|
import numpy as np |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.testing_utils import require_flax, require_tf, require_torch |
|
from transformers.utils import ( |
|
can_return_tuple, |
|
expand_dims, |
|
filter_out_non_signature_kwargs, |
|
flatten_dict, |
|
is_flax_available, |
|
is_tf_available, |
|
is_torch_available, |
|
reshape, |
|
squeeze, |
|
to_py_obj, |
|
transpose, |
|
) |
|
|
|
|
|
if is_flax_available(): |
|
import jax.numpy as jnp |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class GenericTester(unittest.TestCase): |
|
def test_flatten_dict(self): |
|
input_dict = { |
|
"task_specific_params": { |
|
"summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, |
|
"summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, |
|
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, |
|
} |
|
} |
|
expected_dict = { |
|
"task_specific_params.summarization.length_penalty": 1.0, |
|
"task_specific_params.summarization.max_length": 128, |
|
"task_specific_params.summarization.min_length": 12, |
|
"task_specific_params.summarization.num_beams": 4, |
|
"task_specific_params.summarization_cnn.length_penalty": 2.0, |
|
"task_specific_params.summarization_cnn.max_length": 142, |
|
"task_specific_params.summarization_cnn.min_length": 56, |
|
"task_specific_params.summarization_cnn.num_beams": 4, |
|
"task_specific_params.summarization_xsum.length_penalty": 1.0, |
|
"task_specific_params.summarization_xsum.max_length": 62, |
|
"task_specific_params.summarization_xsum.min_length": 11, |
|
"task_specific_params.summarization_xsum.num_beams": 6, |
|
} |
|
|
|
self.assertEqual(flatten_dict(input_dict), expected_dict) |
|
|
|
def test_transpose_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(transpose(x), x.transpose())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0)))) |
|
|
|
@require_torch |
|
def test_transpose_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) |
|
|
|
@require_tf |
|
def test_transpose_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) |
|
|
|
@require_flax |
|
def test_transpose_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t)))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0))))) |
|
|
|
def test_reshape_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3)))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5)))) |
|
|
|
@require_torch |
|
def test_reshape_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) |
|
|
|
@require_tf |
|
def test_reshape_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) |
|
|
|
@require_flax |
|
def test_reshape_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3))))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5))))) |
|
|
|
def test_squeeze_numpy(self): |
|
x = np.random.randn(1, 3, 4) |
|
self.assertTrue(np.allclose(squeeze(x), np.squeeze(x))) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2))) |
|
|
|
@require_torch |
|
def test_squeeze_torch(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) |
|
|
|
@require_tf |
|
def test_squeeze_tf(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) |
|
|
|
@require_flax |
|
def test_squeeze_flax(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t)))) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2)))) |
|
|
|
def test_expand_dims_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1))) |
|
|
|
@require_torch |
|
def test_expand_dims_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) |
|
|
|
@require_tf |
|
def test_expand_dims_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) |
|
|
|
@require_flax |
|
def test_expand_dims_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1)))) |
|
|
|
def test_to_py_obj_native(self): |
|
self.assertTrue(to_py_obj(1) == 1) |
|
self.assertTrue(to_py_obj([1, 2, 3]) == [1, 2, 3]) |
|
self.assertTrue(to_py_obj([((1.0, 1.1), 1.2), (2, 3)]) == [[[1.0, 1.1], 1.2], [2, 3]]) |
|
|
|
def test_to_py_obj_numpy(self): |
|
x1 = [[1, 2, 3], [4, 5, 6]] |
|
t1 = np.array(x1) |
|
self.assertTrue(to_py_obj(t1) == x1) |
|
|
|
x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] |
|
t2 = np.array(x2) |
|
self.assertTrue(to_py_obj(t2) == x2) |
|
|
|
self.assertTrue(to_py_obj([t1, t2]) == [x1, x2]) |
|
|
|
@require_torch |
|
def test_to_py_obj_torch(self): |
|
x1 = [[1, 2, 3], [4, 5, 6]] |
|
t1 = torch.tensor(x1) |
|
self.assertTrue(to_py_obj(t1) == x1) |
|
|
|
x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] |
|
t2 = torch.tensor(x2) |
|
self.assertTrue(to_py_obj(t2) == x2) |
|
|
|
self.assertTrue(to_py_obj([t1, t2]) == [x1, x2]) |
|
|
|
@require_tf |
|
def test_to_py_obj_tf(self): |
|
x1 = [[1, 2, 3], [4, 5, 6]] |
|
t1 = tf.constant(x1) |
|
self.assertTrue(to_py_obj(t1) == x1) |
|
|
|
x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] |
|
t2 = tf.constant(x2) |
|
self.assertTrue(to_py_obj(t2) == x2) |
|
|
|
self.assertTrue(to_py_obj([t1, t2]) == [x1, x2]) |
|
|
|
@require_flax |
|
def test_to_py_obj_flax(self): |
|
x1 = [[1, 2, 3], [4, 5, 6]] |
|
t1 = jnp.array(x1) |
|
self.assertTrue(to_py_obj(t1) == x1) |
|
|
|
x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] |
|
t2 = jnp.array(x2) |
|
self.assertTrue(to_py_obj(t2) == x2) |
|
|
|
self.assertTrue(to_py_obj([t1, t2]) == [x1, x2]) |
|
|
|
@require_torch |
|
@require_tf |
|
@require_flax |
|
def test_to_py_obj_mixed(self): |
|
x1 = [[1], [2]] |
|
t1 = np.array(x1) |
|
|
|
x2 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] |
|
t2 = torch.tensor(x2) |
|
|
|
x3 = [1, 2, 3] |
|
t3 = tf.constant(x3) |
|
|
|
x4 = [[[1.0, 2.0]]] |
|
t4 = jnp.array(x4) |
|
|
|
mixed = [(t1, t2), (t3, t4)] |
|
self.assertTrue(to_py_obj(mixed) == [[x1, x2], [x3, x4]]) |
|
|
|
|
|
class ValidationDecoratorTester(unittest.TestCase): |
|
def test_cases_no_warning(self): |
|
with warnings.catch_warnings(record=True) as raised_warnings: |
|
warnings.simplefilter("always") |
|
|
|
|
|
@filter_out_non_signature_kwargs() |
|
def func1(a): |
|
return a |
|
|
|
result = func1(1) |
|
self.assertEqual(result, 1) |
|
|
|
|
|
@filter_out_non_signature_kwargs(extra=["extra_arg"]) |
|
def func2(a, **kwargs): |
|
return a, kwargs |
|
|
|
a, kwargs = func2(1) |
|
self.assertEqual(a, 1) |
|
self.assertEqual(kwargs, {}) |
|
|
|
a, kwargs = func2(1, extra_arg=2) |
|
self.assertEqual(a, 1) |
|
self.assertEqual(kwargs, {"extra_arg": 2}) |
|
|
|
|
|
@filter_out_non_signature_kwargs(extra=["extra_arg", "extra_arg2"]) |
|
def func3(a, **kwargs): |
|
return a, kwargs |
|
|
|
a, kwargs = func3(2) |
|
self.assertEqual(a, 2) |
|
self.assertEqual(kwargs, {}) |
|
|
|
a, kwargs = func3(3, extra_arg2=3) |
|
self.assertEqual(a, 3) |
|
self.assertEqual(kwargs, {"extra_arg2": 3}) |
|
|
|
a, kwargs = func3(1, extra_arg=2, extra_arg2=3) |
|
self.assertEqual(a, 1) |
|
self.assertEqual(kwargs, {"extra_arg": 2, "extra_arg2": 3}) |
|
|
|
|
|
self.assertEqual(len(raised_warnings), 0, f"Warning raised: {[w.message for w in raised_warnings]}") |
|
|
|
def test_cases_with_warnings(self): |
|
@filter_out_non_signature_kwargs() |
|
def func1(a): |
|
return a |
|
|
|
with self.assertWarns(UserWarning): |
|
func1(1, extra_arg=2) |
|
|
|
@filter_out_non_signature_kwargs(extra=["extra_arg"]) |
|
def func2(a, **kwargs): |
|
return kwargs |
|
|
|
with self.assertWarns(UserWarning): |
|
kwargs = func2(1, extra_arg=2, extra_arg2=3) |
|
self.assertEqual(kwargs, {"extra_arg": 2}) |
|
|
|
@filter_out_non_signature_kwargs(extra=["extra_arg", "extra_arg2"]) |
|
def func3(a, **kwargs): |
|
return kwargs |
|
|
|
with self.assertWarns(UserWarning): |
|
kwargs = func3(1, extra_arg=2, extra_arg2=3, extra_arg3=4) |
|
self.assertEqual(kwargs, {"extra_arg": 2, "extra_arg2": 3}) |
|
|
|
|
|
@require_torch |
|
class CanReturnTupleDecoratorTester(unittest.TestCase): |
|
def _get_model(self, config, store_config=True, raise_in_forward=False): |
|
|
|
class SimpleTestModel(torch.nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if store_config: |
|
self.config = config |
|
|
|
@can_return_tuple |
|
def forward(self, x): |
|
if raise_in_forward: |
|
raise ValueError("Test error") |
|
return BaseModelOutput( |
|
last_hidden_state=x, |
|
hidden_states=None, |
|
attentions=None, |
|
) |
|
|
|
return SimpleTestModel(config) |
|
|
|
def test_decorator_eager(self): |
|
"""Test that the can_return_tuple decorator works with eager mode.""" |
|
|
|
|
|
config = PretrainedConfig() |
|
model = self._get_model(config) |
|
inputs = torch.tensor(10) |
|
output = model(inputs) |
|
self.assertIsInstance( |
|
output, BaseModelOutput, "output should be a BaseModelOutput when return_dict is not set" |
|
) |
|
|
|
|
|
for config_return_dict in [True, False, None]: |
|
for return_dict in [True, False, None]: |
|
config = PretrainedConfig(return_dict=config_return_dict) |
|
model = self._get_model(config) |
|
output = model(torch.tensor(10), return_dict=return_dict) |
|
|
|
expected_type = tuple if config_return_dict is False or return_dict is False else BaseModelOutput |
|
message = f"output should be a {expected_type.__name__} when config.use_return_dict={config_return_dict} and return_dict={return_dict}" |
|
self.assertIsInstance(output, expected_type, message) |
|
|
|
def test_decorator_compiled(self): |
|
"""Test that the can_return_tuple decorator works with compiled mode.""" |
|
config = PretrainedConfig() |
|
|
|
|
|
model = self._get_model(config) |
|
compiled_model = torch.compile(model) |
|
output = compiled_model(torch.tensor(10)) |
|
self.assertIsInstance(output, BaseModelOutput) |
|
|
|
|
|
model = self._get_model(config) |
|
compiled_model = torch.compile(model) |
|
output = compiled_model(torch.tensor(10), return_dict=False) |
|
self.assertIsInstance(output, tuple) |
|
|
|
def test_decorator_torch_export(self): |
|
"""Test that the can_return_tuple decorator works with torch.export.""" |
|
config = PretrainedConfig() |
|
model = self._get_model(config) |
|
torch.export.export(model, args=(torch.tensor(10),)) |
|
|
|
def test_decorator_torchscript(self): |
|
"""Test that the can_return_tuple decorator works with torch.jit.trace.""" |
|
config = PretrainedConfig(return_dict=False) |
|
model = self._get_model(config) |
|
inputs = torch.tensor(10) |
|
traced_module = torch.jit.trace(model, inputs) |
|
output = traced_module(inputs) |
|
self.assertIsInstance(output, tuple) |
|
|
|
def test_attribute_cleanup(self): |
|
"""Test that the `_is_top_level_module` attribute is removed after the forward call.""" |
|
|
|
config = PretrainedConfig(return_dict=False) |
|
inputs = torch.tensor(10) |
|
|
|
|
|
model = self._get_model(config) |
|
output = model(inputs) |
|
|
|
self.assertIsInstance(output, tuple) |
|
for name, module in model.named_modules(): |
|
self.assertFalse( |
|
hasattr(module, "_is_top_level_module"), |
|
f"Module `{name}` should not have `_is_top_level_module` attribute", |
|
) |
|
|
|
|
|
no_config_model = self._get_model(config, store_config=False) |
|
output = no_config_model(inputs) |
|
|
|
self.assertIsInstance(output, BaseModelOutput) |
|
for name, module in no_config_model.named_modules(): |
|
self.assertFalse( |
|
hasattr(module, "_is_top_level_module"), |
|
f"Module `{name}` should not have `_is_top_level_module` attribute", |
|
) |
|
|
|
|
|
model_with_raise = self._get_model(config, raise_in_forward=True) |
|
with self.assertRaises(ValueError): |
|
model_with_raise(inputs) |
|
|
|
for name, module in model_with_raise.named_modules(): |
|
self.assertFalse( |
|
hasattr(module, "_is_top_level_module"), |
|
f"Module `{name}` should not have `_is_top_level_module` attribute", |
|
) |
|
|