|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import json |
|
import os |
|
import random |
|
import re |
|
import unittest |
|
from dataclasses import fields, is_dataclass |
|
from pathlib import Path |
|
from textwrap import dedent |
|
from typing import get_args |
|
|
|
from huggingface_hub import ( |
|
AudioClassificationInput, |
|
AutomaticSpeechRecognitionInput, |
|
DepthEstimationInput, |
|
ImageClassificationInput, |
|
ImageSegmentationInput, |
|
ImageToTextInput, |
|
ObjectDetectionInput, |
|
QuestionAnsweringInput, |
|
VideoClassificationInput, |
|
ZeroShotImageClassificationInput, |
|
) |
|
|
|
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES |
|
from transformers.pipelines import ( |
|
AudioClassificationPipeline, |
|
AutomaticSpeechRecognitionPipeline, |
|
DepthEstimationPipeline, |
|
ImageClassificationPipeline, |
|
ImageSegmentationPipeline, |
|
ImageToTextPipeline, |
|
ObjectDetectionPipeline, |
|
QuestionAnsweringPipeline, |
|
VideoClassificationPipeline, |
|
ZeroShotImageClassificationPipeline, |
|
) |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
require_av, |
|
require_pytesseract, |
|
require_timm, |
|
require_torch, |
|
require_torch_or_tf, |
|
require_vision, |
|
) |
|
from transformers.utils import direct_transformers_import, logging |
|
|
|
from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests |
|
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests |
|
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests |
|
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests |
|
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests |
|
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests |
|
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests |
|
from .pipelines.test_pipelines_image_feature_extraction import ImageFeatureExtractionPipelineTests |
|
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests |
|
from .pipelines.test_pipelines_image_text_to_text import ImageTextToTextPipelineTests |
|
from .pipelines.test_pipelines_image_to_image import ImageToImagePipelineTests |
|
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests |
|
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests |
|
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests |
|
from .pipelines.test_pipelines_question_answering import QAPipelineTests |
|
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests |
|
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests |
|
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests |
|
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests |
|
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests |
|
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests |
|
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests |
|
from .pipelines.test_pipelines_translation import TranslationPipelineTests |
|
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests |
|
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests |
|
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests |
|
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests |
|
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests |
|
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests |
|
|
|
|
|
pipeline_test_mapping = { |
|
"audio-classification": {"test": AudioClassificationPipelineTests}, |
|
"automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests}, |
|
"depth-estimation": {"test": DepthEstimationPipelineTests}, |
|
"document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests}, |
|
"feature-extraction": {"test": FeatureExtractionPipelineTests}, |
|
"fill-mask": {"test": FillMaskPipelineTests}, |
|
"image-classification": {"test": ImageClassificationPipelineTests}, |
|
"image-feature-extraction": {"test": ImageFeatureExtractionPipelineTests}, |
|
"image-segmentation": {"test": ImageSegmentationPipelineTests}, |
|
"image-text-to-text": {"test": ImageTextToTextPipelineTests}, |
|
"image-to-image": {"test": ImageToImagePipelineTests}, |
|
"image-to-text": {"test": ImageToTextPipelineTests}, |
|
"mask-generation": {"test": MaskGenerationPipelineTests}, |
|
"object-detection": {"test": ObjectDetectionPipelineTests}, |
|
"question-answering": {"test": QAPipelineTests}, |
|
"summarization": {"test": SummarizationPipelineTests}, |
|
"table-question-answering": {"test": TQAPipelineTests}, |
|
"text2text-generation": {"test": Text2TextGenerationPipelineTests}, |
|
"text-classification": {"test": TextClassificationPipelineTests}, |
|
"text-generation": {"test": TextGenerationPipelineTests}, |
|
"text-to-audio": {"test": TextToAudioPipelineTests}, |
|
"token-classification": {"test": TokenClassificationPipelineTests}, |
|
"translation": {"test": TranslationPipelineTests}, |
|
"video-classification": {"test": VideoClassificationPipelineTests}, |
|
"visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests}, |
|
"zero-shot": {"test": ZeroShotClassificationPipelineTests}, |
|
"zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests}, |
|
"zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests}, |
|
"zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests}, |
|
} |
|
|
|
task_to_pipeline_and_spec_mapping = { |
|
|
|
|
|
"audio-classification": (AudioClassificationPipeline, AudioClassificationInput), |
|
"automatic-speech-recognition": (AutomaticSpeechRecognitionPipeline, AutomaticSpeechRecognitionInput), |
|
"depth-estimation": (DepthEstimationPipeline, DepthEstimationInput), |
|
"image-classification": (ImageClassificationPipeline, ImageClassificationInput), |
|
"image-segmentation": (ImageSegmentationPipeline, ImageSegmentationInput), |
|
"image-to-text": (ImageToTextPipeline, ImageToTextInput), |
|
"object-detection": (ObjectDetectionPipeline, ObjectDetectionInput), |
|
"question-answering": (QuestionAnsweringPipeline, QuestionAnsweringInput), |
|
"video-classification": (VideoClassificationPipeline, VideoClassificationInput), |
|
"zero-shot-image-classification": (ZeroShotImageClassificationPipeline, ZeroShotImageClassificationInput), |
|
} |
|
|
|
for task, task_info in pipeline_test_mapping.items(): |
|
test = task_info["test"] |
|
task_info["mapping"] = { |
|
"pt": getattr(test, "model_mapping", None), |
|
"tf": getattr(test, "tf_model_mapping", None), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing") |
|
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing": |
|
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json") |
|
else: |
|
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json") |
|
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp: |
|
tiny_model_summary = json.load(fp) |
|
|
|
|
|
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers") |
|
|
|
|
|
|
|
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PipelineTesterMixin: |
|
model_tester = None |
|
pipeline_model_mapping = None |
|
supported_frameworks = ["pt", "tf"] |
|
|
|
def run_task_tests(self, task, torch_dtype="float32"): |
|
"""Run pipeline tests for a specific `task` |
|
|
|
Args: |
|
task (`str`): |
|
A task name. This should be a key in the mapping `pipeline_test_mapping`. |
|
torch_dtype (`str`, `optional`, defaults to `'float32'`): |
|
The torch dtype to use for the model. Can be used for FP16/other precision inference. |
|
""" |
|
if task not in self.pipeline_model_mapping: |
|
self.skipTest( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: `{task}` is not in " |
|
f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`." |
|
) |
|
|
|
model_architectures = self.pipeline_model_mapping[task] |
|
if not isinstance(model_architectures, tuple): |
|
model_architectures = (model_architectures,) |
|
|
|
|
|
|
|
at_least_one_model_is_tested = False |
|
|
|
for model_architecture in model_architectures: |
|
model_arch_name = model_architecture.__name__ |
|
model_type = model_architecture.config_class.model_type |
|
|
|
|
|
for _prefix in ["Flax", "TF"]: |
|
if model_arch_name.startswith(_prefix): |
|
model_arch_name = model_arch_name[len(_prefix) :] |
|
break |
|
|
|
if model_arch_name not in tiny_model_summary: |
|
continue |
|
|
|
tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"] |
|
|
|
|
|
image_processor_names = [] |
|
feature_extractor_names = [] |
|
|
|
processor_classes = tiny_model_summary[model_arch_name]["processor_classes"] |
|
for cls_name in processor_classes: |
|
if "ImageProcessor" in cls_name: |
|
image_processor_names.append(cls_name) |
|
elif "FeatureExtractor" in cls_name: |
|
feature_extractor_names.append(cls_name) |
|
|
|
|
|
|
|
processor_names = PROCESSOR_MAPPING_NAMES.get(model_type, None) |
|
if not isinstance(processor_names, (list, tuple)): |
|
processor_names = [processor_names] |
|
|
|
commit = None |
|
if model_arch_name in tiny_model_summary and "sha" in tiny_model_summary[model_arch_name]: |
|
commit = tiny_model_summary[model_arch_name]["sha"] |
|
|
|
repo_name = f"tiny-random-{model_arch_name}" |
|
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing": |
|
repo_name = model_arch_name |
|
|
|
self.run_model_pipeline_tests( |
|
task, |
|
repo_name, |
|
model_architecture, |
|
tokenizer_names=tokenizer_names, |
|
image_processor_names=image_processor_names, |
|
feature_extractor_names=feature_extractor_names, |
|
processor_names=processor_names, |
|
commit=commit, |
|
torch_dtype=torch_dtype, |
|
) |
|
at_least_one_model_is_tested = True |
|
|
|
if task in task_to_pipeline_and_spec_mapping: |
|
pipeline, hub_spec = task_to_pipeline_and_spec_mapping[task] |
|
compare_pipeline_args_to_hub_spec(pipeline, hub_spec) |
|
|
|
if not at_least_one_model_is_tested: |
|
self.skipTest( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find any " |
|
f"model architecture in the tiny models JSON file for `{task}`." |
|
) |
|
|
|
def run_model_pipeline_tests( |
|
self, |
|
task, |
|
repo_name, |
|
model_architecture, |
|
tokenizer_names, |
|
image_processor_names, |
|
feature_extractor_names, |
|
processor_names, |
|
commit, |
|
torch_dtype="float32", |
|
): |
|
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names |
|
|
|
Args: |
|
task (`str`): |
|
A task name. This should be a key in the mapping `pipeline_test_mapping`. |
|
repo_name (`str`): |
|
A model repository id on the Hub. |
|
model_architecture (`type`): |
|
A subclass of `PretrainedModel` or `PretrainedModel`. |
|
tokenizer_names (`List[str]`): |
|
A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. |
|
image_processor_names (`List[str]`): |
|
A list of names of subclasses of `BaseImageProcessor`. |
|
feature_extractor_names (`List[str]`): |
|
A list of names of subclasses of `FeatureExtractionMixin`. |
|
processor_names (`List[str]`): |
|
A list of names of subclasses of `ProcessorMixin`. |
|
commit (`str`): |
|
The commit hash of the model repository on the Hub. |
|
torch_dtype (`str`, `optional`, defaults to `'float32'`): |
|
The torch dtype to use for the model. Can be used for FP16/other precision inference. |
|
""" |
|
|
|
|
|
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__ |
|
|
|
|
|
|
|
tokenizer_names = tokenizer_names or [None] |
|
image_processor_names = image_processor_names or [None] |
|
feature_extractor_names = feature_extractor_names or [None] |
|
processor_names = processor_names or [None] |
|
|
|
test_cases = [ |
|
{ |
|
"tokenizer_name": tokenizer_name, |
|
"image_processor_name": image_processor_name, |
|
"feature_extractor_name": feature_extractor_name, |
|
"processor_name": processor_name, |
|
} |
|
for tokenizer_name in tokenizer_names |
|
for image_processor_name in image_processor_names |
|
for feature_extractor_name in feature_extractor_names |
|
for processor_name in processor_names |
|
] |
|
|
|
for test_case in test_cases: |
|
tokenizer_name = test_case["tokenizer_name"] |
|
image_processor_name = test_case["image_processor_name"] |
|
feature_extractor_name = test_case["feature_extractor_name"] |
|
processor_name = test_case["processor_name"] |
|
|
|
do_skip_test_case = self.is_pipeline_test_to_skip( |
|
pipeline_test_class_name, |
|
model_architecture.config_class, |
|
model_architecture, |
|
tokenizer_name, |
|
image_processor_name, |
|
feature_extractor_name, |
|
processor_name, |
|
) |
|
|
|
if do_skip_test_case: |
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is " |
|
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer " |
|
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor {feature_extractor_name}." |
|
) |
|
continue |
|
|
|
self.run_pipeline_test( |
|
task, |
|
repo_name, |
|
model_architecture, |
|
tokenizer_name=tokenizer_name, |
|
image_processor_name=image_processor_name, |
|
feature_extractor_name=feature_extractor_name, |
|
processor_name=processor_name, |
|
commit=commit, |
|
torch_dtype=torch_dtype, |
|
) |
|
|
|
def run_pipeline_test( |
|
self, |
|
task, |
|
repo_name, |
|
model_architecture, |
|
tokenizer_name, |
|
image_processor_name, |
|
feature_extractor_name, |
|
processor_name, |
|
commit, |
|
torch_dtype="float32", |
|
): |
|
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name |
|
|
|
The model will be loaded from a model repository on the Hub. |
|
|
|
Args: |
|
task (`str`): |
|
A task name. This should be a key in the mapping `pipeline_test_mapping`. |
|
repo_name (`str`): |
|
A model repository id on the Hub. |
|
model_architecture (`type`): |
|
A subclass of `PretrainedModel` or `PretrainedModel`. |
|
tokenizer_name (`str`): |
|
The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. |
|
image_processor_name (`str`): |
|
The name of a subclass of `BaseImageProcessor`. |
|
feature_extractor_name (`str`): |
|
The name of a subclass of `FeatureExtractionMixin`. |
|
processor_name (`str`): |
|
The name of a subclass of `ProcessorMixin`. |
|
commit (`str`): |
|
The commit hash of the model repository on the Hub. |
|
torch_dtype (`str`, `optional`, defaults to `'float32'`): |
|
The torch dtype to use for the model. Can be used for FP16/other precision inference. |
|
""" |
|
repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}" |
|
model_type = model_architecture.config_class.model_type |
|
|
|
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing": |
|
repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name) |
|
|
|
|
|
|
|
|
|
try: |
|
model = model_architecture.from_pretrained(repo_id, revision=commit) |
|
except Exception: |
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load " |
|
f"the model from `{repo_id}` with `{model_architecture}`." |
|
) |
|
self.skipTest(f"Could not find or load the model from {repo_id} with {model_architecture}.") |
|
|
|
|
|
|
|
tokenizer = None |
|
if tokenizer_name is not None: |
|
tokenizer_class = getattr(transformers_module, tokenizer_name) |
|
tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit) |
|
|
|
|
|
|
|
processors = {} |
|
for key, name in zip( |
|
["image_processor", "feature_extractor", "processor"], |
|
[image_processor_name, feature_extractor_name, processor_name], |
|
): |
|
if name is not None: |
|
try: |
|
|
|
processor_class = getattr(transformers_module, name) |
|
processor = processor_class.from_pretrained(repo_id, revision=commit) |
|
processors[key] = processor |
|
except Exception: |
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: " |
|
f"Could not load the {key} from `{repo_id}` with `{name}`." |
|
) |
|
self.skipTest(f"Could not load the {key} from {repo_id} with {name}.") |
|
|
|
|
|
|
|
|
|
if tokenizer is None and "image_processor" not in processors and "feature_extractor" not in processors: |
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load " |
|
f"any tokenizer / image processor / feature extractor from `{repo_id}`." |
|
) |
|
self.skipTest(f"Could not find or load any tokenizer / processor from {repo_id}.") |
|
|
|
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__ |
|
if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, **processors): |
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is " |
|
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer " |
|
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`." |
|
) |
|
self.skipTest( |
|
f"Test is known to fail for: model `{model_architecture.__name__}` | tokenizer `{tokenizer_name}` " |
|
f"| image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`." |
|
) |
|
|
|
|
|
validate_test_components(model, tokenizer) |
|
|
|
if hasattr(model, "eval"): |
|
model = model.eval() |
|
|
|
|
|
|
|
task_test = pipeline_test_mapping[task]["test"]() |
|
|
|
pipeline, examples = task_test.get_test_pipeline(model, tokenizer, **processors, torch_dtype=torch_dtype) |
|
if pipeline is None: |
|
|
|
|
|
logger.warning( |
|
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not get the " |
|
"pipeline for testing." |
|
) |
|
self.skipTest(reason="Could not get the pipeline for testing.") |
|
|
|
task_test.run_pipeline_test(pipeline, examples) |
|
|
|
def run_batch_test(pipeline, examples): |
|
|
|
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None: |
|
return |
|
|
|
|
|
|
|
def data(n): |
|
for _ in range(n): |
|
|
|
yield copy.deepcopy(random.choice(examples)) |
|
|
|
out = [] |
|
for item in pipeline(data(10), batch_size=4): |
|
out.append(item) |
|
self.assertEqual(len(out), 10) |
|
|
|
run_batch_test(pipeline, examples) |
|
|
|
@is_pipeline_test |
|
def test_pipeline_audio_classification(self): |
|
self.run_task_tests(task="audio-classification") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_audio_classification_fp16(self): |
|
self.run_task_tests(task="audio-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_automatic_speech_recognition(self): |
|
self.run_task_tests(task="automatic-speech-recognition") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_automatic_speech_recognition_fp16(self): |
|
self.run_task_tests(task="automatic-speech-recognition", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_depth_estimation(self): |
|
self.run_task_tests(task="depth-estimation") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_depth_estimation_fp16(self): |
|
self.run_task_tests(task="depth-estimation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_pytesseract |
|
@require_torch |
|
@require_vision |
|
def test_pipeline_document_question_answering(self): |
|
self.run_task_tests(task="document-question-answering") |
|
|
|
@is_pipeline_test |
|
@require_pytesseract |
|
@require_torch |
|
@require_vision |
|
def test_pipeline_document_question_answering_fp16(self): |
|
self.run_task_tests(task="document-question-answering", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_feature_extraction(self): |
|
self.run_task_tests(task="feature-extraction") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_feature_extraction_fp16(self): |
|
self.run_task_tests(task="feature-extraction", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_fill_mask(self): |
|
self.run_task_tests(task="fill-mask") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_fill_mask_fp16(self): |
|
self.run_task_tests(task="fill-mask", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
@require_vision |
|
def test_pipeline_image_classification(self): |
|
self.run_task_tests(task="image-classification") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_classification_fp16(self): |
|
self.run_task_tests(task="image-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_image_segmentation(self): |
|
self.run_task_tests(task="image-segmentation") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_image_segmentation_fp16(self): |
|
self.run_task_tests(task="image-segmentation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_text_to_text(self): |
|
self.run_task_tests(task="image-text-to-text") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_text_to_text_fp16(self): |
|
self.run_task_tests(task="image-text-to-text", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
def test_pipeline_image_to_text(self): |
|
self.run_task_tests(task="image-to-text") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_to_text_fp16(self): |
|
self.run_task_tests(task="image-to-text", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_timm |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_feature_extraction(self): |
|
self.run_task_tests(task="image-feature-extraction") |
|
|
|
@is_pipeline_test |
|
@require_timm |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_image_feature_extraction_fp16(self): |
|
self.run_task_tests(task="image-feature-extraction", torch_dtype="float16") |
|
|
|
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.") |
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_mask_generation(self): |
|
self.run_task_tests(task="mask-generation") |
|
|
|
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.") |
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_mask_generation_fp16(self): |
|
self.run_task_tests(task="mask-generation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_object_detection(self): |
|
self.run_task_tests(task="object-detection") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
def test_pipeline_object_detection_fp16(self): |
|
self.run_task_tests(task="object-detection", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_question_answering(self): |
|
self.run_task_tests(task="question-answering") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_question_answering_fp16(self): |
|
self.run_task_tests(task="question-answering", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_summarization(self): |
|
self.run_task_tests(task="summarization") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_summarization_fp16(self): |
|
self.run_task_tests(task="summarization", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_table_question_answering(self): |
|
self.run_task_tests(task="table-question-answering") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_table_question_answering_fp16(self): |
|
self.run_task_tests(task="table-question-answering", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_text2text_generation(self): |
|
self.run_task_tests(task="text2text-generation") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_text2text_generation_fp16(self): |
|
self.run_task_tests(task="text2text-generation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_text_classification(self): |
|
self.run_task_tests(task="text-classification") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_text_classification_fp16(self): |
|
self.run_task_tests(task="text-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
def test_pipeline_text_generation(self): |
|
self.run_task_tests(task="text-generation") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_text_generation_fp16(self): |
|
self.run_task_tests(task="text-generation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_text_to_audio(self): |
|
self.run_task_tests(task="text-to-audio") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_text_to_audio_fp16(self): |
|
self.run_task_tests(task="text-to-audio", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_token_classification(self): |
|
self.run_task_tests(task="token-classification") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_token_classification_fp16(self): |
|
self.run_task_tests(task="token-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_translation(self): |
|
self.run_task_tests(task="translation") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_translation_fp16(self): |
|
self.run_task_tests(task="translation", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
@require_vision |
|
@require_av |
|
def test_pipeline_video_classification(self): |
|
self.run_task_tests(task="video-classification") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
@require_av |
|
def test_pipeline_video_classification_fp16(self): |
|
self.run_task_tests(task="video-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
@require_vision |
|
def test_pipeline_visual_question_answering(self): |
|
self.run_task_tests(task="visual-question-answering") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
@require_vision |
|
def test_pipeline_visual_question_answering_fp16(self): |
|
self.run_task_tests(task="visual-question-answering", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
def test_pipeline_zero_shot(self): |
|
self.run_task_tests(task="zero-shot") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_zero_shot_fp16(self): |
|
self.run_task_tests(task="zero-shot", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_zero_shot_audio_classification(self): |
|
self.run_task_tests(task="zero-shot-audio-classification") |
|
|
|
@is_pipeline_test |
|
@require_torch |
|
def test_pipeline_zero_shot_audio_classification_fp16(self): |
|
self.run_task_tests(task="zero-shot-audio-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
def test_pipeline_zero_shot_image_classification(self): |
|
self.run_task_tests(task="zero-shot-image-classification") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_zero_shot_image_classification_fp16(self): |
|
self.run_task_tests(task="zero-shot-image-classification", torch_dtype="float16") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_zero_shot_object_detection(self): |
|
self.run_task_tests(task="zero-shot-object-detection") |
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
def test_pipeline_zero_shot_object_detection_fp16(self): |
|
self.run_task_tests(task="zero-shot-object-detection", torch_dtype="float16") |
|
|
|
|
|
def is_pipeline_test_to_skip( |
|
self, |
|
pipeline_test_case_name, |
|
config_class, |
|
model_architecture, |
|
tokenizer_name, |
|
image_processor_name, |
|
feature_extractor_name, |
|
processor_name, |
|
): |
|
"""Skip some tests based on the classes or their names without the instantiated objects. |
|
|
|
This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail. |
|
""" |
|
|
|
if ( |
|
pipeline_test_case_name == "DocumentQuestionAnsweringPipelineTests" |
|
and tokenizer_name is not None |
|
and not tokenizer_name.endswith("Fast") |
|
): |
|
|
|
return True |
|
|
|
return False |
|
|
|
def is_pipeline_test_to_skip_more( |
|
self, |
|
pipeline_test_case_name, |
|
config, |
|
model, |
|
tokenizer, |
|
image_processor=None, |
|
feature_extractor=None, |
|
processor=None, |
|
): |
|
"""Skip some more tests based on the information from the instantiated objects.""" |
|
|
|
if ( |
|
pipeline_test_case_name == "QAPipelineTests" |
|
and tokenizer is not None |
|
and getattr(tokenizer, "pad_token", None) is None |
|
and not tokenizer.__class__.__name__.endswith("Fast") |
|
): |
|
|
|
return True |
|
|
|
return False |
|
|
|
|
|
def validate_test_components(model, tokenizer): |
|
|
|
|
|
|
|
if model.__class__.__name__ == "BlenderbotForCausalLM": |
|
model.config.encoder_no_repeat_ngram_size = 0 |
|
|
|
|
|
|
|
CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"] |
|
if tokenizer is not None: |
|
|
|
config_vocab_size = getattr(model.config.get_text_config(decoder=True), "vocab_size", None) |
|
|
|
if config_vocab_size is None: |
|
if hasattr(model.config, "text_encoder"): |
|
config_vocab_size = getattr(model.config.text_config, "vocab_size", None) |
|
if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE: |
|
raise ValueError( |
|
"Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`." |
|
) |
|
|
|
|
|
def get_arg_names_from_hub_spec(hub_spec, first_level=True): |
|
|
|
|
|
arg_names = [] |
|
for field in fields(hub_spec): |
|
|
|
if is_dataclass(field.type): |
|
arg_names.extend([field.name for field in fields(field.type)]) |
|
continue |
|
|
|
for param_type in get_args(field.type): |
|
if is_dataclass(param_type): |
|
|
|
arg_names.extend([field.name for field in fields(param_type)]) |
|
break |
|
else: |
|
|
|
arg_names.append(field.name) |
|
return arg_names |
|
|
|
|
|
def parse_args_from_docstring_by_indentation(docstring): |
|
|
|
|
|
|
|
docstring = dedent(docstring) |
|
lines_by_indent = [ |
|
(len(line) - len(line.lstrip()), line.strip()) for line in docstring.split("\n") if line.strip() |
|
] |
|
args_lineno = None |
|
args_indent = None |
|
args_end = None |
|
for lineno, (indent, line) in enumerate(lines_by_indent): |
|
if line == "Args:": |
|
args_lineno = lineno |
|
args_indent = indent |
|
continue |
|
elif args_lineno is not None and indent == args_indent: |
|
args_end = lineno |
|
break |
|
if args_lineno is None: |
|
raise ValueError("No args block to parse!") |
|
elif args_end is None: |
|
args_block = lines_by_indent[args_lineno + 1 :] |
|
else: |
|
args_block = lines_by_indent[args_lineno + 1 : args_end] |
|
outer_indent_level = min(line[0] for line in args_block) |
|
outer_lines = [line for line in args_block if line[0] == outer_indent_level] |
|
arg_names = [re.match(r"(\w+)\W", line[1]).group(1) for line in outer_lines] |
|
return arg_names |
|
|
|
|
|
def compare_pipeline_args_to_hub_spec(pipeline_class, hub_spec): |
|
""" |
|
Compares the docstring of a pipeline class to the fields of the matching Hub input signature class to ensure that |
|
they match. This guarantees that Transformers pipelines can be used in inference without needing to manually |
|
refactor or rename inputs. |
|
""" |
|
ALLOWED_TRANSFORMERS_ONLY_ARGS = ["timeout"] |
|
|
|
docstring = inspect.getdoc(pipeline_class.__call__).strip() |
|
docstring_args = set(parse_args_from_docstring_by_indentation(docstring)) |
|
hub_args = set(get_arg_names_from_hub_spec(hub_spec)) |
|
|
|
|
|
hub_generate_args = [ |
|
hub_arg for hub_arg in hub_args if hub_arg.startswith("generate") or hub_arg.startswith("generation") |
|
] |
|
docstring_generate_args = [ |
|
docstring_arg |
|
for docstring_arg in docstring_args |
|
if docstring_arg.startswith("generate") or docstring_arg.startswith("generation") |
|
] |
|
if ( |
|
len(hub_generate_args) == 1 |
|
and len(docstring_generate_args) == 1 |
|
and hub_generate_args != docstring_generate_args |
|
): |
|
hub_args.remove(hub_generate_args[0]) |
|
docstring_args.remove(docstring_generate_args[0]) |
|
|
|
|
|
for arg in ALLOWED_TRANSFORMERS_ONLY_ARGS: |
|
if arg in docstring_args and arg not in hub_args: |
|
docstring_args.remove(arg) |
|
|
|
if hub_args != docstring_args: |
|
error = [f"{pipeline_class.__name__} differs from JS spec {hub_spec.__name__}"] |
|
matching_args = hub_args & docstring_args |
|
huggingface_hub_only = hub_args - docstring_args |
|
transformers_only = docstring_args - hub_args |
|
if matching_args: |
|
error.append(f"Matching args: {matching_args}") |
|
if huggingface_hub_only: |
|
error.append(f"Huggingface Hub only: {huggingface_hub_only}") |
|
if transformers_only: |
|
error.append(f"Transformers only: {transformers_only}") |
|
raise ValueError("\n".join(error)) |
|
|