|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import json |
|
import os |
|
import pathlib |
|
import tempfile |
|
import time |
|
import warnings |
|
|
|
import numpy as np |
|
import requests |
|
from packaging import version |
|
|
|
from transformers import AutoImageProcessor, BatchFeature |
|
from transformers.image_utils import AnnotationFormat, AnnotionFormat |
|
from transformers.testing_utils import ( |
|
check_json_file_has_correct_format, |
|
is_flaky, |
|
require_torch, |
|
require_torch_accelerator, |
|
require_vision, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
def prepare_image_inputs( |
|
batch_size, |
|
min_resolution, |
|
max_resolution, |
|
num_channels, |
|
size_divisor=None, |
|
equal_resolution=False, |
|
numpify=False, |
|
torchify=False, |
|
): |
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, |
|
or a list of PyTorch tensors if one specifies torchify=True. |
|
|
|
One can specify whether the images are of the same resolution or not. |
|
""" |
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
image_inputs = [] |
|
for i in range(batch_size): |
|
if equal_resolution: |
|
width = height = max_resolution |
|
else: |
|
|
|
if size_divisor is not None: |
|
|
|
min_resolution = max(size_divisor, min_resolution) |
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) |
|
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) |
|
|
|
if not numpify and not torchify: |
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs] |
|
|
|
if torchify: |
|
image_inputs = [torch.from_numpy(image) for image in image_inputs] |
|
|
|
if numpify: |
|
|
|
image_inputs = [image.transpose(1, 2, 0) for image in image_inputs] |
|
|
|
return image_inputs |
|
|
|
|
|
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False): |
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" |
|
|
|
video = [] |
|
for i in range(num_frames): |
|
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8)) |
|
|
|
if not numpify and not torchify: |
|
|
|
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video] |
|
|
|
if torchify: |
|
video = [torch.from_numpy(frame) for frame in video] |
|
|
|
return video |
|
|
|
|
|
def prepare_video_inputs( |
|
batch_size, |
|
num_frames, |
|
num_channels, |
|
min_resolution, |
|
max_resolution, |
|
equal_resolution=False, |
|
numpify=False, |
|
torchify=False, |
|
): |
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if |
|
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True. |
|
|
|
One can specify whether the videos are of the same resolution or not. |
|
""" |
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
video_inputs = [] |
|
for _ in range(batch_size): |
|
if equal_resolution: |
|
width = height = max_resolution |
|
else: |
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) |
|
video = prepare_video( |
|
num_frames=num_frames, |
|
num_channels=num_channels, |
|
width=width, |
|
height=height, |
|
numpify=numpify, |
|
torchify=torchify, |
|
) |
|
video_inputs.append(video) |
|
|
|
return video_inputs |
|
|
|
|
|
class ImageProcessingTestMixin: |
|
test_cast_dtype = None |
|
image_processing_class = None |
|
fast_image_processing_class = None |
|
image_processors_list = None |
|
test_slow_image_processor = True |
|
test_fast_image_processor = True |
|
|
|
def setUp(self): |
|
image_processor_list = [] |
|
|
|
if self.test_slow_image_processor and self.image_processing_class: |
|
image_processor_list.append(self.image_processing_class) |
|
|
|
if self.test_fast_image_processor and self.fast_image_processing_class: |
|
image_processor_list.append(self.fast_image_processing_class) |
|
|
|
self.image_processor_list = image_processor_list |
|
|
|
@require_vision |
|
@require_torch |
|
def test_slow_fast_equivalence(self): |
|
if not self.test_slow_image_processor or not self.test_fast_image_processor: |
|
self.skipTest(reason="Skipping slow/fast equivalence test") |
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None: |
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined") |
|
|
|
dummy_image = Image.open( |
|
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw |
|
) |
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict) |
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict) |
|
|
|
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt") |
|
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt") |
|
torch.testing.assert_close(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1, rtol=1e-3) |
|
self.assertLessEqual( |
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 5e-3 |
|
) |
|
|
|
@require_vision |
|
@require_torch |
|
def test_slow_fast_equivalence_batched(self): |
|
if not self.test_slow_image_processor or not self.test_fast_image_processor: |
|
self.skipTest(reason="Skipping slow/fast equivalence test") |
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None: |
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined") |
|
|
|
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop: |
|
self.skipTest( |
|
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors" |
|
) |
|
|
|
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) |
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict) |
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict) |
|
|
|
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt") |
|
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt") |
|
|
|
torch.testing.assert_close(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1, rtol=1e-3) |
|
self.assertLessEqual( |
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 5e-3 |
|
) |
|
|
|
@require_vision |
|
@require_torch |
|
@is_flaky() |
|
def test_fast_is_faster_than_slow(self): |
|
if not self.test_slow_image_processor or not self.test_fast_image_processor: |
|
self.skipTest(reason="Skipping speed test") |
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None: |
|
self.skipTest(reason="Skipping speed test as one of the image processors is not defined") |
|
|
|
def measure_time(image_processor, image): |
|
|
|
for _ in range(5): |
|
_ = image_processor(image, return_tensors="pt") |
|
all_times = [] |
|
for _ in range(10): |
|
start = time.time() |
|
_ = image_processor(image, return_tensors="pt") |
|
all_times.append(time.time() - start) |
|
|
|
avg_time = sum(sorted(all_times[:3])) / 3.0 |
|
return avg_time |
|
|
|
dummy_images = [torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8) for _ in range(4)] |
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict) |
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict) |
|
|
|
fast_time = measure_time(image_processor_fast, dummy_images) |
|
slow_time = measure_time(image_processor_slow, dummy_images) |
|
|
|
self.assertLessEqual(fast_time, slow_time) |
|
|
|
def test_image_processor_to_json_string(self): |
|
for image_processing_class in self.image_processor_list: |
|
image_processor = image_processing_class(**self.image_processor_dict) |
|
obj = json.loads(image_processor.to_json_string()) |
|
for key, value in self.image_processor_dict.items(): |
|
self.assertEqual(obj[key], value) |
|
|
|
def test_image_processor_to_json_file(self): |
|
for image_processing_class in self.image_processor_list: |
|
image_processor_first = image_processing_class(**self.image_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
json_file_path = os.path.join(tmpdirname, "image_processor.json") |
|
image_processor_first.to_json_file(json_file_path) |
|
image_processor_second = image_processing_class.from_json_file(json_file_path) |
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
def test_image_processor_from_and_save_pretrained(self): |
|
for image_processing_class in self.image_processor_list: |
|
image_processor_first = image_processing_class(**self.image_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = image_processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
image_processor_second = image_processing_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
def test_image_processor_save_load_with_autoimageprocessor(self): |
|
for i, image_processing_class in enumerate(self.image_processor_list): |
|
image_processor_first = image_processing_class(**self.image_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = image_processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
|
|
use_fast = i == 1 or not self.test_slow_image_processor |
|
image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=use_fast) |
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
def test_save_load_fast_slow(self): |
|
"Test that we can load a fast image processor from a slow one and vice-versa." |
|
if self.image_processing_class is None or self.fast_image_processing_class is None: |
|
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined") |
|
|
|
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() |
|
image_processor_slow_0 = self.image_processing_class(**image_processor_dict) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
image_processor_slow_0.save_pretrained(tmpdirname) |
|
image_processor_fast_0 = self.fast_image_processing_class.from_pretrained(tmpdirname) |
|
|
|
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
image_processor_fast_1.save_pretrained(tmpdirname) |
|
image_processor_slow_1 = self.image_processing_class.from_pretrained(tmpdirname) |
|
|
|
dict_slow_0 = image_processor_slow_0.to_dict() |
|
dict_slow_1 = image_processor_slow_1.to_dict() |
|
difference = { |
|
key: dict_slow_0.get(key) if key in dict_slow_0 else dict_slow_1.get(key) |
|
for key in set(dict_slow_0) ^ set(dict_slow_1) |
|
} |
|
dict_slow_0 = {key: dict_slow_0[key] for key in set(dict_slow_0) & set(dict_slow_1)} |
|
dict_slow_1 = {key: dict_slow_1[key] for key in set(dict_slow_0) & set(dict_slow_1)} |
|
|
|
self.assertTrue( |
|
all(value is None for key, value in difference.items() if key not in ["default_to_square", "data_format"]) |
|
) |
|
|
|
self.assertEqual(dict_slow_0, dict_slow_1) |
|
|
|
dict_fast_0 = image_processor_fast_0.to_dict() |
|
dict_fast_1 = image_processor_fast_1.to_dict() |
|
difference = { |
|
key: dict_fast_0.get(key) if key in dict_fast_0 else dict_fast_1.get(key) |
|
for key in set(dict_fast_0) ^ set(dict_fast_1) |
|
} |
|
dict_fast_0 = {key: dict_fast_0[key] for key in set(dict_fast_0) & set(dict_fast_1)} |
|
dict_fast_1 = {key: dict_fast_1[key] for key in set(dict_fast_0) & set(dict_fast_1)} |
|
|
|
self.assertTrue( |
|
all(value is None for key, value in difference.items() if key not in ["default_to_square", "data_format"]) |
|
) |
|
|
|
self.assertEqual(dict_fast_0, dict_fast_1) |
|
|
|
def test_save_load_fast_slow_auto(self): |
|
"Test that we can load a fast image processor from a slow one and vice-versa using AutoImageProcessor." |
|
if self.image_processing_class is None or self.fast_image_processing_class is None: |
|
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined") |
|
|
|
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() |
|
image_processor_slow_0 = self.image_processing_class(**image_processor_dict) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
image_processor_slow_0.save_pretrained(tmpdirname) |
|
image_processor_fast_0 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=True) |
|
|
|
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
image_processor_fast_1.save_pretrained(tmpdirname) |
|
image_processor_slow_1 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=False) |
|
|
|
dict_slow_0 = image_processor_slow_0.to_dict() |
|
dict_slow_1 = image_processor_slow_1.to_dict() |
|
difference = { |
|
key: dict_slow_0.get(key) if key in dict_slow_0 else dict_slow_1.get(key) |
|
for key in set(dict_slow_0) ^ set(dict_slow_1) |
|
} |
|
dict_slow_0 = {key: dict_slow_0[key] for key in set(dict_slow_0) & set(dict_slow_1)} |
|
dict_slow_1 = {key: dict_slow_1[key] for key in set(dict_slow_0) & set(dict_slow_1)} |
|
|
|
self.assertTrue( |
|
all(value is None for key, value in difference.items() if key not in ["default_to_square", "data_format"]) |
|
) |
|
|
|
self.assertEqual(dict_slow_0, dict_slow_1) |
|
|
|
dict_fast_0 = image_processor_fast_0.to_dict() |
|
dict_fast_1 = image_processor_fast_1.to_dict() |
|
difference = { |
|
key: dict_fast_0.get(key) if key in dict_fast_0 else dict_fast_1.get(key) |
|
for key in set(dict_fast_0) ^ set(dict_fast_1) |
|
} |
|
dict_fast_0 = {key: dict_fast_0[key] for key in set(dict_fast_0) & set(dict_fast_1)} |
|
dict_fast_1 = {key: dict_fast_1[key] for key in set(dict_fast_0) & set(dict_fast_1)} |
|
|
|
self.assertTrue( |
|
all(value is None for key, value in difference.items() if key not in ["default_to_square", "data_format"]) |
|
) |
|
|
|
self.assertEqual(dict_fast_0, dict_fast_1) |
|
|
|
def test_init_without_params(self): |
|
for image_processing_class in self.image_processor_list: |
|
image_processor = image_processing_class() |
|
self.assertIsNotNone(image_processor) |
|
|
|
@require_torch |
|
@require_vision |
|
def test_cast_dtype_device(self): |
|
for image_processing_class in self.image_processor_list: |
|
if self.test_cast_dtype is not None: |
|
|
|
image_processor = image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt") |
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float32) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16) |
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16) |
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16) |
|
|
|
with self.assertRaises(TypeError): |
|
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") |
|
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt") |
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) |
|
encoding = encoding.to(torch.float16) |
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16) |
|
self.assertEqual(encoding.input_ids.dtype, torch.long) |
|
|
|
def test_call_pil(self): |
|
for image_processing_class in self.image_processor_list: |
|
|
|
image_processing = image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, Image.Image) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
self.assertEqual( |
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
) |
|
|
|
def test_call_numpy(self): |
|
for image_processing_class in self.image_processor_list: |
|
|
|
image_processing = image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
self.assertEqual( |
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
) |
|
|
|
def test_call_pytorch(self): |
|
for image_processing_class in self.image_processor_list: |
|
|
|
image_processing = image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) |
|
|
|
for image in image_inputs: |
|
self.assertIsInstance(image, torch.Tensor) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
tuple(encoded_images.shape), |
|
(self.image_processor_tester.batch_size, *expected_output_image_shape), |
|
) |
|
|
|
def test_call_numpy_4_channels(self): |
|
for image_processing_class in self.image_processor_list: |
|
|
|
|
|
image_processor = image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
self.image_processor_tester.num_channels = 4 |
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) |
|
|
|
|
|
encoded_images = image_processor( |
|
image_inputs[0], |
|
return_tensors="pt", |
|
input_data_format="channels_last", |
|
image_mean=0, |
|
image_std=1, |
|
).pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]]) |
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) |
|
|
|
|
|
encoded_images = image_processor( |
|
image_inputs, |
|
return_tensors="pt", |
|
input_data_format="channels_last", |
|
image_mean=0, |
|
image_std=1, |
|
).pixel_values |
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) |
|
self.assertEqual( |
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) |
|
) |
|
|
|
def test_image_processor_preprocess_arguments(self): |
|
is_tested = False |
|
|
|
for image_processing_class in self.image_processor_list: |
|
image_processor = image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"): |
|
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args |
|
preprocess_parameter_names.remove("self") |
|
preprocess_parameter_names.sort() |
|
valid_processor_keys = image_processor._valid_processor_keys |
|
valid_processor_keys.sort() |
|
self.assertEqual(preprocess_parameter_names, valid_processor_keys) |
|
is_tested = True |
|
|
|
|
|
if hasattr(image_processor.preprocess, "_filter_out_non_signature_kwargs"): |
|
if hasattr(self.image_processor_tester, "prepare_image_inputs"): |
|
inputs = self.image_processor_tester.prepare_image_inputs() |
|
elif hasattr(self.image_processor_tester, "prepare_video_inputs"): |
|
inputs = self.image_processor_tester.prepare_video_inputs() |
|
else: |
|
self.skipTest(reason="No valid input preparation method found") |
|
|
|
with warnings.catch_warnings(record=True) as raised_warnings: |
|
warnings.simplefilter("always") |
|
image_processor(inputs, extra_argument=True) |
|
|
|
messages = " ".join([str(w.message) for w in raised_warnings]) |
|
self.assertGreaterEqual(len(raised_warnings), 1) |
|
self.assertIn("extra_argument", messages) |
|
is_tested = True |
|
|
|
if not is_tested: |
|
self.skipTest(reason="No validation found for `preprocess` method") |
|
|
|
@slow |
|
@require_torch_accelerator |
|
@require_vision |
|
def test_can_compile_fast_image_processor(self): |
|
if self.fast_image_processing_class is None: |
|
self.skipTest("Skipping compilation test as fast image processor is not defined") |
|
if version.parse(torch.__version__) < version.parse("2.3"): |
|
self.skipTest(reason="This test requires torch >= 2.3 to run.") |
|
|
|
torch.compiler.reset() |
|
input_image = torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8) |
|
image_processor = self.fast_image_processing_class(**self.image_processor_dict) |
|
output_eager = image_processor(input_image, device=torch_device, return_tensors="pt") |
|
|
|
image_processor = torch.compile(image_processor, mode="reduce-overhead") |
|
output_compiled = image_processor(input_image, device=torch_device, return_tensors="pt") |
|
|
|
torch.testing.assert_close(output_eager.pixel_values, output_compiled.pixel_values, rtol=1e-4, atol=1e-4) |
|
|
|
|
|
class AnnotationFormatTestMixin: |
|
|
|
|
|
|
|
|
|
def test_processor_can_use_legacy_annotation_format(self): |
|
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() |
|
fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO" |
|
|
|
with open(fixtures_path / "coco_annotations.txt") as f: |
|
detection_target = json.loads(f.read()) |
|
|
|
detection_annotations = {"image_id": 39769, "annotations": detection_target} |
|
|
|
detection_params = { |
|
"images": Image.open(fixtures_path / "000000039769.png"), |
|
"annotations": detection_annotations, |
|
"return_tensors": "pt", |
|
} |
|
|
|
with open(fixtures_path / "coco_panoptic_annotations.txt") as f: |
|
panoptic_target = json.loads(f.read()) |
|
|
|
panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target} |
|
|
|
masks_path = pathlib.Path(fixtures_path / "coco_panoptic") |
|
|
|
panoptic_params = { |
|
"images": Image.open(fixtures_path / "000000039769.png"), |
|
"annotations": panoptic_annotations, |
|
"return_tensors": "pt", |
|
"masks_path": masks_path, |
|
} |
|
|
|
test_cases = [ |
|
("coco_detection", detection_params), |
|
("coco_panoptic", panoptic_params), |
|
(AnnotionFormat.COCO_DETECTION, detection_params), |
|
(AnnotionFormat.COCO_PANOPTIC, panoptic_params), |
|
(AnnotationFormat.COCO_DETECTION, detection_params), |
|
(AnnotationFormat.COCO_PANOPTIC, panoptic_params), |
|
] |
|
|
|
def _compare(a, b) -> None: |
|
if isinstance(a, (dict, BatchFeature)): |
|
self.assertEqual(a.keys(), b.keys()) |
|
for k, v in a.items(): |
|
_compare(v, b[k]) |
|
elif isinstance(a, list): |
|
self.assertEqual(len(a), len(b)) |
|
for idx in range(len(a)): |
|
_compare(a[idx], b[idx]) |
|
elif isinstance(a, torch.Tensor): |
|
torch.testing.assert_close(a, b, rtol=1e-3, atol=1e-3) |
|
elif isinstance(a, str): |
|
self.assertEqual(a, b) |
|
|
|
for annotation_format, params in test_cases: |
|
with self.subTest(annotation_format): |
|
image_processor_params = {**image_processor_dict, **{"format": annotation_format}} |
|
image_processor_first = self.image_processing_class(**image_processor_params) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
image_processor_first.save_pretrained(tmpdirname) |
|
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname) |
|
|
|
|
|
|
|
self.assertIn("format", image_processor_first.to_dict().keys()) |
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
|
|
|
|
first_encoding = image_processor_first(**params) |
|
second_encoding = image_processor_second(**params) |
|
_compare(first_encoding, second_encoding) |
|
|