|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BitNetQuantConfig, |
|
OPTForCausalLM, |
|
) |
|
from transformers.testing_utils import ( |
|
backend_empty_cache, |
|
require_accelerate, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_accelerate_available, is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
|
|
@require_torch_gpu |
|
class BitNetQuantConfigTest(unittest.TestCase): |
|
def test_to_dict(self): |
|
""" |
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object |
|
""" |
|
quantization_config = BitNetQuantConfig() |
|
config_to_dict = quantization_config.to_dict() |
|
|
|
for key in config_to_dict: |
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key]) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
@require_accelerate |
|
class BitNetTest(unittest.TestCase): |
|
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens" |
|
|
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
""" |
|
Load the model |
|
""" |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) |
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained(cls.model_name, device_map=torch_device) |
|
|
|
def tearDown(self): |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
gc.collect() |
|
|
|
def test_replace_with_bitlinear(self): |
|
from transformers.integrations import BitLinear, replace_with_bitnet_linear |
|
|
|
model_id = "facebook/opt-350m" |
|
config = AutoConfig.from_pretrained(model_id) |
|
|
|
with init_empty_weights(): |
|
model = OPTForCausalLM(config) |
|
|
|
nb_linears = 0 |
|
for module in model.modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
nb_linears += 1 |
|
|
|
model = replace_with_bitnet_linear(model) |
|
nb_bitnet_linear = 0 |
|
for module in model.modules(): |
|
if isinstance(module, BitLinear): |
|
nb_bitnet_linear += 1 |
|
|
|
self.assertEqual(nb_linears - 1, nb_bitnet_linear) |
|
|
|
def test_quantized_model(self): |
|
""" |
|
Simple test that checks if the quantized model is working properly |
|
""" |
|
input_text = "What are we having for dinner?" |
|
expected_output = "What are we having for dinner? What are we going to do for fun this weekend?" |
|
input_ids = self.tokenizer(input_text, return_tensors="pt").to(torch_device) |
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=11, do_sample=False) |
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), expected_output) |
|
|
|
def test_packing_unpacking(self): |
|
""" |
|
Simple test the packing and unpacking logic |
|
""" |
|
|
|
from transformers.integrations import pack_weights, unpack_weights |
|
|
|
u = torch.randint(0, 255, (256, 256), dtype=torch.uint8) |
|
unpacked_u = unpack_weights(u, dtype=torch.bfloat16) |
|
repacked_u = pack_weights(unpacked_u) |
|
for i in range(u.shape[0]): |
|
for j in range(u.shape[1]): |
|
self.assertEqual(repacked_u[i][j], u[i][j]) |
|
|
|
def test_activation_quant(self): |
|
""" |
|
test the activation function behaviour |
|
""" |
|
|
|
from transformers.integrations import BitLinear |
|
|
|
layer = BitLinear(in_features=4, out_features=2, bias=False, dtype=torch.float32) |
|
layer.to(torch_device) |
|
|
|
input_tensor = torch.tensor([1.0, -1.0, -1.0, 1.0], dtype=torch.float32).to(torch_device) |
|
|
|
|
|
quantized_tensor, scale = layer.activation_quant(input_tensor) |
|
|
|
|
|
for i in range(input_tensor.shape[0]): |
|
self.assertEqual(quantized_tensor[i] / scale, input_tensor[i]) |
|
|
|
|
|
self.assertEqual(scale, 127) |
|
|
|
def test_weights_dtype(self): |
|
""" |
|
test the weights dtype after loading |
|
""" |
|
|
|
self_attn_q = self.quantized_model.model.layers[0].self_attn.q_proj.weight |
|
self_attn_k = self.quantized_model.model.layers[0].self_attn.k_proj.weight |
|
self_attn_v = self.quantized_model.model.layers[0].self_attn.v_proj.weight |
|
self_attn_o = self.quantized_model.model.layers[0].self_attn.o_proj.weight |
|
mlp_gate = self.quantized_model.model.layers[0].mlp.gate_proj.weight |
|
mlp_up = self.quantized_model.model.layers[0].mlp.up_proj.weight |
|
mlp_down = self.quantized_model.model.layers[0].mlp.down_proj.weight |
|
|
|
self.assertEqual(self_attn_q.dtype, torch.uint8) |
|
self.assertEqual(self_attn_k.dtype, torch.uint8) |
|
self.assertEqual(self_attn_v.dtype, torch.uint8) |
|
self.assertEqual(self_attn_o.dtype, torch.uint8) |
|
self.assertEqual(mlp_up.dtype, torch.uint8) |
|
self.assertEqual(mlp_gate.dtype, torch.uint8) |
|
self.assertEqual(mlp_down.dtype, torch.uint8) |
|
|
|
def test_replace_with_bitlinear_shape(self): |
|
""" |
|
test that the BitNet layer weight shapes are correct, and the weight_scale is correctly initialized to 1 |
|
""" |
|
|
|
from transformers.integrations import replace_with_bitnet_linear |
|
|
|
out_features = 1024 |
|
in_features = 512 |
|
|
|
class SimpleLinearModule(torch.nn.Module): |
|
""" |
|
Simple class to test BitLinear |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int = in_features, |
|
out_features: int = out_features, |
|
bias: bool = False, |
|
): |
|
super().__init__() |
|
self.linear = torch.nn.Linear(in_features=in_features, out_features=out_features, bias=bias) |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
model = SimpleLinearModule() |
|
replace_with_bitnet_linear(model) |
|
|
|
self.assertEqual(list(model.linear.weight.shape), [out_features // 4, in_features]) |
|
self.assertEqual(model.linear.weight_scale, 1) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
@require_accelerate |
|
class BitNetSerializationTest(unittest.TestCase): |
|
def test_model_serialization(self): |
|
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens" |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=torch_device) |
|
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
logits_ref = quantized_model.forward(input_tensor).logits |
|
|
|
|
|
saved_model_id = "quant_model" |
|
quantized_model.save_pretrained(saved_model_id) |
|
|
|
|
|
del quantized_model |
|
backend_empty_cache(torch_device) |
|
|
|
|
|
model_loaded = AutoModelForCausalLM.from_pretrained("quant_model", device_map=torch_device) |
|
|
|
with torch.no_grad(): |
|
logits_loaded = model_loaded.forward(input_tensor).logits |
|
|
|
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0) |
|
|