Spaces:
Sleeping
Sleeping
| # Run test with: | |
| # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_mlp_parallel.py | |
| import pytest | |
| import torch | |
| import torch.nn.functional as F | |
| from apex.transformer import parallel_state, tensor_parallel | |
| from einops import rearrange | |
| from flash_attn.modules.mlp import GatedMlp, ParallelGatedMlp | |
| is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
| # @pytest.mark.parametrize('dtype', [torch.float16]) | |
| # @pytest.mark.parametrize('world_size', [2]) | |
| # @pytest.mark.parametrize('sequence_parallel', [False]) | |
| # @pytest.mark.parametrize('activation', [F.silu]) | |
| # @pytest.mark.parametrize('dim', [1024]) | |
| def test_mlp_parallel(dim, activation, sequence_parallel, world_size, dtype): | |
| rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) | |
| if not torch.distributed.is_initialized(): | |
| torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
| device = f"cuda:{torch.distributed.get_rank()}" | |
| assert world_size <= torch.distributed.get_world_size() | |
| parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
| rank = parallel_state.get_tensor_model_parallel_rank() | |
| # set seed | |
| torch.random.manual_seed(0) | |
| batch_size = 2 | |
| seqlen = 1024 | |
| assert (batch_size * seqlen) % world_size == 0 | |
| x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True) | |
| # We need to generate g here so that all processes get the same gradient, | |
| # as rank 0 will have an extra bias that changes the RNG. | |
| # If we don't divide by batch_size, the gradient gets a bit too large. | |
| g = torch.randn_like(x_pt) / 32 | |
| if sequence_parallel: | |
| x = ( | |
| tensor_parallel.scatter_to_sequence_parallel_region(x_pt) | |
| .detach() | |
| .clone() | |
| .requires_grad_() | |
| ) | |
| else: | |
| x = x_pt.detach().clone().requires_grad_() | |
| model_pt = GatedMlp(dim, activation=activation, device=device, dtype=dtype) | |
| partition_dim = model_pt.fc1.weight.shape[0] // 2 // world_size | |
| model = ParallelGatedMlp( | |
| dim, | |
| parallel_state.get_tensor_model_parallel_group(), | |
| activation=activation, | |
| sequence_parallel=sequence_parallel, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| with torch.no_grad(): | |
| model.fc1.weight.copy_( | |
| rearrange( | |
| rearrange(model_pt.fc1.weight, "(two o) i -> two o i", two=2)[ | |
| :, rank * partition_dim : (rank + 1) * partition_dim | |
| ], | |
| "two o i -> (two o) i", | |
| ) | |
| ) | |
| model.fc1.bias.copy_( | |
| rearrange( | |
| rearrange(model_pt.fc1.bias, "(two o) -> two o", two=2)[ | |
| :, rank * partition_dim : (rank + 1) * partition_dim | |
| ], | |
| "two o -> (two o)", | |
| ) | |
| ) | |
| model.fc2.weight.copy_( | |
| model_pt.fc2.weight[:, rank * partition_dim : (rank + 1) * partition_dim] | |
| ) | |
| if rank == 0: | |
| model.fc2.bias.copy_(model_pt.fc2.bias) | |
| out = model(x) | |
| out_pt = model_pt(x_pt) | |
| partition_batch_dim = batch_size * seqlen // world_size | |
| assert torch.allclose( | |
| out, | |
| out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
| if sequence_parallel | |
| else out_pt, | |
| rtol=rtol, | |
| atol=atol, | |
| ) | |
| out_pt.backward(g) | |
| out.backward( | |
| g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g | |
| ) | |
| parallel_state.destroy_model_parallel() | |
| assert torch.allclose( | |
| x.grad, | |
| x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
| if sequence_parallel | |
| else x_pt.grad, | |
| rtol=rtol, | |
| atol=atol, | |
| ) | |
| assert torch.allclose( | |
| model.fc1.weight.grad, | |
| rearrange( | |
| rearrange(model_pt.fc1.weight.grad, "(two o) i -> two o i", two=2)[ | |
| :, rank * partition_dim : (rank + 1) * partition_dim | |
| ], | |
| "two o i -> (two o) i", | |
| ), | |
| rtol=rtol, | |
| atol=atol, | |
| ) | |
| assert torch.allclose( | |
| model.fc1.bias.grad, | |
| rearrange( | |
| rearrange(model_pt.fc1.bias.grad, "(two o) -> two o", two=2)[ | |
| :, rank * partition_dim : (rank + 1) * partition_dim | |
| ], | |
| "two o -> (two o)", | |
| ), | |
| rtol=rtol, | |
| atol=atol, | |
| ) | |
| assert torch.allclose( | |
| model.fc2.weight.grad, | |
| model_pt.fc2.weight.grad[:, rank * partition_dim : (rank + 1) * partition_dim], | |
| rtol=rtol, | |
| atol=atol, | |
| ) | |
| if rank == 0: | |
| assert torch.allclose(model.fc2.bias.grad, model_pt.fc2.bias.grad, rtol=rtol, atol=atol) | |