Divyanshu Tak
Initial commit of BrainIAC Docker application
f5288df
import torch.nn as nn
from monai.networks.nets import resnet101, resnet50, resnet18, ViT
import torch
## resnet50 architecture, FC layers converted to I
class ResNet50_3D(nn.Module):
def __init__(self):
super(ResNet50_3D, self).__init__()
resnet = resnet50(pretrained=False) # assuming you're not using a pretrained model
resnet.conv1 = nn.Conv3d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
hidden_dim = resnet.fc.in_features
self.backbone = resnet
self.backbone.fc = nn.Identity()
def forward(self, x):
x = self.backbone(x)
return x
class Classifier(nn.Module):
""" Classifier class with FC layer and single output neuron """
def __init__(self, d_model, hidden_dim=1024, num_classes=1):
super(Classifier, self).__init__()
self.fc = nn.Linear(d_model, num_classes)
def forward(self, x):
x = self.fc(x)
return x
class Backbone(nn.Module):
""" ResNet 3D Backbone"""
def __init__(self):
super(Backbone, self).__init__()
resnet = resnet50(pretrained=False) # assuming you're not using a pretrained model
resnet.conv1 = nn.Conv3d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
hidden_dim = resnet.fc.in_features
self.backbone = resnet
self.backbone.fc = nn.Identity()
def forward(self, x):
x = self.backbone(x)
return x
class SingleScanModel(nn.Module):
""" End to end model with backbone and classifier"""
def __init__(self, backbone, classifier):
super(SingleScanModel, self).__init__()
self.backbone = backbone
self.classifier = classifier
self.dropout = nn.Dropout(p=0.2)
def forward(self, x):
x = self.backbone(x)
x = self.dropout(x)
x = self.classifier(x)
return x
class SingleScanModelBP(nn.Module):
""" End to end model with backbone and classifier that takes 2 input scans at once"""
def __init__(self, backbone, classifier):
super(SingleScanModelBP, self).__init__()
self.backbone = backbone
self.classifier = classifier
self.dropout = nn.Dropout(p=0.2)
self.bilinear_pooling = nn.Bilinear(in1_features=2048, in2_features=2048, out_features=512)
def forward(self, x):
x = [self.backbone(scan) for scan in x.split(1, dim=1)]
features = torch.stack(x, dim=1).squeeze(2)
merged_features = torch.mean(features, dim=1) # Shape: (batch_size, feature_dim)
merged_features = self.dropout(merged_features)
output = self.classifier(merged_features)
return output