Disty0's picture
Update app.py
9fb0d27
raw
history blame
6.79 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import os
from tqdm import tqdm
import gradio_user_history as gr_user_history
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = '''# Latent Consistency Model OpenVino CPU
Based on [Latency Consistency Model OpenVINO CPU](https://huggingface.co/spaces/deinferno/Latent_Consistency_Model_OpenVino_CPU) HF space
Converted from [SoteMix](https://huggingface.co/Disty0/SoteMix) to [LCM_SoteMix](https://huggingface.co/Disty0/LCM_SoteMix) and then to OpenVINO
This model is for Anime art style.
[LCM Project page](https://latent-consistency-models.github.io)
<p>Running on CPU with OpenVINO Acceleration</p>
'''
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
model_id = "Disty0/LCM_SoteMix"
batch_size = -1
width = int(os.getenv("IMAGE_WIDTH", "512"))
height = int(os.getenv("IMAGE_HEIGHT", "512"))
num_images = int(os.getenv("NUM_IMAGES", "1"))
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
def __init__(
self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
):
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
# Inject TAESD
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipe.compile()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
unique_name = str(uuid.uuid4()) + '.png'
img.save(unique_name)
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
paths = []
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
return paths
def generate(
prompt: str,
seed: int = 0,
guidance_scale: float = 1.0,
num_inference_steps: int = 4,
randomize_seed: bool = False,
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
global batch_size
global width
global height
global num_images
seed = randomize_seed_fn(seed, randomize_seed)
np.random.seed(seed)
start_time = time.time()
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
output_type="pil",
).images
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
print(time.time() - start_time)
return paths, seed
examples = [
"(masterpiece, best quality, highres), anime art style, pixiv, 1girl, solo",
"(masterpiece, best quality, highres), anime art style, pixiv, 1girl, solo, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater",
"(masterpiece, best quality, highres), anime art style, pixiv, 1girl, solo, scenery, wind, petals, rim lighting, shrine, lens flare, light scatter, depth of field, lens refraction, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater",
"(masterpiece, best quality, highres), anime art style, pixiv, 1girl, solo, supernova, abstract, abstract background, (bloom, swirling lights, light particles), fire, galaxy, floating, romanticized, blush, looking at viewer, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2]
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=8,
step=0.1,
value=1.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Accordion("Past generations", open=False):
gr_user_history.render()
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
guidance_scale,
num_inference_steps,
randomize_seed
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch()