pllava-7b-demo / tasks /eval /mvbench /pllava_eval_mvbench.py
cathyxl
added
f239efc
raw
history blame
9.34 kB
import functools
import itertools
import logging
from tqdm import tqdm
from PIL import Image
from multiprocessing import Pool
import multiprocessing as mp
from argparse import ArgumentParser
import numpy as np
import torch
import torchvision
from decord import VideoReader, cpu
import transformers
from tasks.eval.model_utils import load_pllava, pllava_answer
from tasks.eval.eval_utils import conv_templates
from tasks.eval.mvbench import (
MVBenchDataset,
check_ans,
save_results,
load_results,
)
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
RESOLUTION = 672 #
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
default='llava-hf/llava-1.5-7b-hf'
)
parser.add_argument(
"--save_path",
type=str,
required=True,
default='"./test_results/test_llava_mvbench"'
)
parser.add_argument(
"--num_frames",
type=int,
required=True,
default=4,
)
parser.add_argument(
"--use_lora",
action='store_true'
)
parser.add_argument(
"--lora_alpha",
type=int,
required=False,
default=32,
)
parser.add_argument(
"--weight_dir",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--conv_mode",
type=str,
required=False,
default='eval_mvbench',
)
parser.add_argument(
"--pooling_shape",
type=str,
required=False,
default=None,
)
args = parser.parse_args()
return args
def load_model_and_dataset(rank, world_size, pretrained_model_name_or_path, num_frames, use_lora, lora_alpha, weight_dir, pooling_shape=(16,12,12)):
# remind that, once the model goes larger (30B+) may cause the memory to be heavily used up. Even Tearing Nodes.
model, processor = load_pllava(pretrained_model_name_or_path, num_frames=num_frames, use_lora=use_lora, weight_dir=weight_dir, lora_alpha=lora_alpha, pooling_shape=pooling_shape)
logger.info('done loading llava')
# position embedding
model = model.to(torch.device(rank))
model = model.eval()
dataset = MVBenchDataset(num_segments=num_frames)
dataset.set_rank_and_world_size(rank, world_size)
return model, processor, dataset
def infer_mvbench(
model,
processor,
data_sample,
conv_mode,
pre_query_prompt=None, # add in the head of question
post_query_prompt=None, # add in the end of question
answer_prompt=None, # add in the begining of answer
return_prompt=None, # add in the begining of return message
print_res=False,
):
video_list = data_sample["video_pils"]
conv = conv_templates[conv_mode].copy()
conv.user_query(data_sample['question'], pre_query_prompt, post_query_prompt, is_mm=True)
if answer_prompt is not None:
conv.assistant_response(answer_prompt)
llm_message, conv = pllava_answer(
conv=conv,
model=model,
processor=processor,
img_list=video_list,
max_new_tokens=100,
do_sample=False,
print_res=print_res
)
if answer_prompt is not None:
llm_message = ''.join(llm_message.split(answer_prompt)[1:])
if return_prompt is not None:
llm_message = return_prompt + llm_message
return llm_message
def single_test(model, processor, vid_path, num_frames=4, conv_mode="plain"):
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path, num_segments=8, return_msg=False, num_frames=4, resolution=336):
transforms = torchvision.transforms.Resize(size=resolution)
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(transforms(img))
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return images_group, msg
else:
return images_group
if num_frames != 0:
vid, msg = load_video(vid_path, num_segments=num_frames, return_msg=True, resolution=RESOLUTION)
else:
vid, msg = None, 'num_frames is 0, not inputing image'
img_list = vid
conv = conv_templates[conv_mode].copy()
conv.user_query("Describe the video in details.", is_mm=True)
llm_response, conv = pllava_answer(conv=conv, model=model, processor=processor, do_sample=False, img_list=img_list, max_new_tokens=256, print_res=True)
def run(rank, args, world_size):
if rank != 0:
transformers.utils.logging.set_verbosity_error()
logger.setLevel(transformers.logging.ERROR)
print_res = False
conv_mode= args.conv_mode
pre_query_prompt = None
post_query_prompt = "\nOnly give the best option."
if args.pooling_shape is not None:
pooling_shape=tuple([int(x) for x in args.pooling_shape.split("-")])
logger.info(f'loading model and constructing dataset to gpu {rank}...')
model, processor, dataset = load_model_and_dataset(rank,
world_size,
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
num_frames=args.num_frames,
use_lora=args.use_lora,
lora_alpha=args.lora_alpha,
weight_dir=args.weight_dir,
pooling_shape=pooling_shape)
logger.info(f'done model and dataset...')
logger.info('constructing dataset...')
logger.info('single test...')
vid_path = "./example/yoga.mp4"
# vid_path = "./example/jesse_dance.mp4"
if rank == 0:
single_test(model,
processor,
vid_path,
num_frames=args.num_frames,
conv_mode=args.conv_mode)
logger.info('single test done...')
tbar = tqdm(total=len(dataset))
correct = 0
total = 0
result_list = []
acc_dict = {}
done_count = 0
for example in dataset:
task_type = example['task_type']
if task_type not in acc_dict:
acc_dict[task_type] = [0, 0] # correct, total
acc_dict[task_type][1] += 1
total += 1
pred = infer_mvbench(
model,
processor,
example,
conv_mode=conv_mode,
pre_query_prompt=pre_query_prompt,
post_query_prompt=post_query_prompt,
answer_prompt="Best option:(",
return_prompt='(',
print_res=print_res,
)
gt = example['answer']
result_list.append({
'pred': pred,
'gt': gt,
'task_type': task_type,
'video_path': example['video_path'],
'question': example['question'],
})
if check_ans(pred=pred, gt=gt):
acc_dict[task_type][0] += 1
correct += 1
if rank == 0:
tbar.update(len(result_list) - done_count, )
tbar.set_description_str(
f"One Chunk--Task Type: {task_type}, Chunk Part Acc: {acc_dict[task_type][0] / acc_dict[task_type][1] * 100 :.2f}%;"
f" Chunk Total Acc: {correct / total * 100 :.2f}%"
)
done_count = len(result_list)
return result_list
def main():
multiprocess=True
mp.set_start_method('spawn')
args = parse_args()
save_path = args.save_path
json_data = load_results(save_path)
if json_data is None:
if multiprocess:
logger.info(f'started benchmarking, saving to: {save_path}')
n_gpus = torch.cuda.device_count()
# assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
world_size = n_gpus
with Pool(world_size) as pool:
func = functools.partial(run, args=args, world_size=world_size)
result_lists = pool.map(func, range(world_size))
logger.info('finished running')
result_list = [ res for res in itertools.chain(*result_lists)]
else:
result_list = run(0, world_size=1, args=args) # debug
else:
logger.info(f'loaded results from {save_path}')
result_list = json_data
save_results(result_list, save_path)
if __name__ == "__main__":
main()