pllava-13b-demo / tasks /eval /model_utils.py
cathyxl
added
f239efc
raw
history blame
6.91 kB
import torch
import os
from peft import get_peft_model, LoraConfig, TaskType
from safetensors import safe_open
from peft import PeftModel
from tasks.eval.eval_utils import Conversation
from models.pllava import PllavaProcessor, PllavaForConditionalGeneration, PllavaConfig
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map,load_checkpoint_in_model
from accelerate.utils import get_balanced_memory
from transformers import StoppingCriteria
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
return False
else:
outputs = self.tokenizer.batch_decode(
output_ids[:, self.start_len:], skip_special_tokens=True
)
flag = True
for output in outputs:
for keyword in self.keywords:
if keyword not in output:
flag = False
return False
return flag
def load_pllava(repo_id, num_frames, use_lora=False, weight_dir=None, lora_alpha=32, use_multi_gpus=False, pooling_shape=(16,12,12)):
kwargs = {
'num_frames': num_frames,
}
# print("===============>pooling_shape", pooling_shape)
if num_frames == 0:
kwargs.update(pooling_shape=(0,12,12)) # produce a bug if ever usen the pooling projector
config = PllavaConfig.from_pretrained(
repo_id if not use_lora else weight_dir,
pooling_shape=pooling_shape,
**kwargs,
)
with torch.no_grad():
model = PllavaForConditionalGeneration.from_pretrained(repo_id, config=config, torch_dtype=torch.bfloat16)
try:
processor = PllavaProcessor.from_pretrained(repo_id)
except Exception as e:
processor = PllavaProcessor.from_pretrained('llava-hf/llava-1.5-7b-hf')
# config lora
if use_lora and weight_dir is not None:
print("Use lora")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=["q_proj", "v_proj"],
r=128, lora_alpha=lora_alpha, lora_dropout=0.
)
print("Lora Scaling:", lora_alpha/128)
model.language_model = get_peft_model(model.language_model, peft_config)
assert weight_dir is not None, "pass a folder to your lora weight"
print("Finish use lora")
# load weights
if weight_dir is not None:
state_dict = {}
save_fnames = os.listdir(weight_dir)
if "model.safetensors" in save_fnames:
use_full = False
for fn in save_fnames:
if fn.startswith('model-0'):
use_full=True
break
else:
use_full= True
if not use_full:
print("Loading weight from", weight_dir, "model.safetensors")
with safe_open(f"{weight_dir}/model.safetensors", framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
else:
print("Loading weight from", weight_dir)
for fn in save_fnames:
if fn.startswith('model-0'):
with safe_open(f"{weight_dir}/{fn}", framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
if 'model' in state_dict.keys():
msg = model.load_state_dict(state_dict['model'], strict=False)
else:
msg = model.load_state_dict(state_dict, strict=False)
print(msg)
# dispatch model weight
if use_multi_gpus:
max_memory = get_balanced_memory(
model,
max_memory=None,
no_split_module_classes=["LlamaDecoderLayer"],
dtype='bfloat16',
low_zero=False,
)
device_map = infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=["LlamaDecoderLayer"],
dtype='bfloat16'
)
dispatch_model(model, device_map=device_map)
print(model.hf_device_map)
model = model.eval()
return model, processor
def load_adapters(model, adapter_model_name_or_paths):
for adapter_model_name_or_path in adapter_model_name_or_paths:
if not isinstance(model, PeftModel):
model = PeftModel.from_pretrained(model, adapter_model_name_or_path, adapter_model_name_or_path)
else:
model.load_adapter(adapter_model_name_or_path, adapter_model_name_or_path)
return model
def pllava_answer(conv: Conversation, model, processor, img_list, do_sample=True, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, stop_criteria_keywords=None, print_res=False):
# torch.cuda.empty_cache()
prompt = conv.get_prompt()
inputs = processor(text=prompt, images=img_list, return_tensors="pt")
if inputs['pixel_values'] is None:
inputs.pop('pixel_values')
inputs = inputs.to(model.device)
# set up stopping criteria
if stop_criteria_keywords is not None:
stopping_criteria = [KeywordsStoppingCriteria(stop_criteria_keywords, processor.tokenizer, inputs["input_ids"])]
else:
stopping_criteria= None
with torch.no_grad():
output_token = model.generate(**inputs, media_type='video',
do_sample=do_sample, max_new_tokens=max_new_tokens, num_beams=num_beams, min_length=min_length,
top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature,
stopping_criteria=stopping_criteria,)
output_text = processor.batch_decode(output_token, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
if "###" in output_text:
output_text = "###".join(output_text.split('###')[:-1]) # remove the stop sign '###'
if print_res: # debug usage
print('### PROMPTING LM WITH: ', prompt)
print('### LM OUTPUT TEXT: ', output_text)
if conv.roles[-1] == "<|im_start|>assistant\n":
split_tag = "<|im_start|> assistant\n"
else:
split_tag = conv.roles[-1]
output_text = output_text.split(split_tag)[-1].rstrip(conv.sep if isinstance(conv.sep, str) else conv.sep[1]).strip()
conv.messages[-1][1] = output_text
return output_text, conv