Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image | |
import random | |
import shutil | |
import datetime | |
import torchvision.transforms.functional as f | |
import torch | |
from typing import Optional, Tuple | |
from threading import Lock | |
from langchain import ConversationChain | |
from chat_anything.tts_talker.tts_edge import TTSTalker | |
from chat_anything.sad_talker.sad_talker import SadTalker | |
from chat_anything.chatbot.chat import load_chain | |
from chat_anything.chatbot.select import model_selection_chain | |
from chat_anything.chatbot.voice_select import voice_selection_chain | |
import gradio as gr | |
TALKING_HEAD_WIDTH = "350" | |
sadtalker_checkpoint_path = "MODELS/SadTalker" | |
config_path = "chat_anything/sad_talker/config" | |
class ChatWrapper: | |
def __init__(self): | |
self.lock = Lock() | |
self.sad_talker = SadTalker( | |
sadtalker_checkpoint_path, config_path, lazy_load=True) | |
def __call__( | |
self, | |
api_key: str, | |
inp: str, | |
history: Optional[Tuple[str, str]], | |
chain: Optional[ConversationChain], | |
speak_text: bool, talking_head: bool, | |
uid: str, | |
talker : None, | |
fullbody : str, | |
): | |
"""Execute the chat functionality.""" | |
self.lock.acquire() | |
if chain is None: | |
history.append((inp, "Please register with your API key first!")) | |
else: | |
try: | |
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") | |
print("inp: " + inp) | |
print("speak_text: ", speak_text) | |
print("talking_head: ", talking_head) | |
history = history or [] | |
# If chain is None, that is because no API key was provided. | |
output = "Please paste your OpenAI key from openai.com to use this app. " + \ | |
str(datetime.datetime.now()) | |
output = chain.predict(input=inp).strip() | |
output = output.replace("\n", "\n\n") | |
text_to_display = output | |
# #预定义一个talker | |
# talker = MaleEn() | |
history.append((inp, text_to_display)) | |
html_video, temp_file, html_audio, temp_aud_file = None, None, None, None | |
if speak_text: | |
if talking_head: | |
html_video, temp_file = self.do_html_video_speak( | |
talker, output, fullbody, uid) | |
else: | |
html_audio, temp_aud_file = self.do_html_audio_speak( | |
talker, output,uid) | |
else: | |
if talking_head: | |
temp_file = os.path.join('tmp', uid, 'videos') | |
html_video = create_html_video( | |
temp_file, TALKING_HEAD_WIDTH) | |
else: | |
pass | |
except Exception as e: | |
raise e | |
finally: | |
self.lock.release() | |
return history, history, html_video, temp_file, html_audio, temp_aud_file, "" | |
def do_html_audio_speak(self,talker, words_to_speak, uid): | |
audio_path = os.path.join('tmp', uid, 'audios') | |
print('uid:', uid, ":", words_to_speak) | |
audo_file_path = talker.test(text=words_to_speak, audio_path=audio_path) | |
html_audio = '<pre>no audio</pre>' | |
try: | |
temp_aud_file = gr.File(audo_file_path) | |
print("audio-----------------------------------------------------success") | |
temp_aud_file_url = "/file=" + temp_aud_file.value['name'] | |
html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>' | |
except IOError as error: | |
# Could not write to file, exit gracefully | |
print(error) | |
return None, None | |
return html_audio, audo_file_path | |
def do_html_video_speak(self,talker,words_to_speak,fullbody, uid): | |
if fullbody: | |
# preprocess='somthing' | |
preprocess='full' | |
else: | |
preprocess='crop' | |
print("success") | |
video_path = os.path.join('tmp', uid, 'videos') | |
if not os.path.exists(video_path): | |
os.makedirs(video_path) | |
video_file_path = os.path.join(video_path, 'tempfile.mp4') | |
_, audio_path = self.do_html_audio_speak( | |
talker,words_to_speak,uid) | |
face_file_path = os.path.join('tmp', uid, 'images', 'test.jpg') | |
video = self.sad_talker.test(face_file_path, audio_path,preprocess, uid=uid) #video_file_path | |
print("---------------------------------------------------------success") | |
print(f"moving {video} -> {video_file_path}") | |
shutil.move(video, video_file_path) | |
return video_file_path, video_file_path | |
def generate_init_face_video(self,class_concept="clock", llm=None,uid=None,fullbody=None, ref_image=None, seed=None): | |
""" | |
""" | |
print('generate concept of', class_concept) | |
print("=================================================") | |
print('fullbody:', fullbody) | |
print('uid:', uid) | |
print("==================================================") | |
chain, memory, personality_text = load_chain(llm, class_concept) | |
model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down | |
# model_conf, selected_model = model_selection_chain(llm, personality_text, conf_file='resources/models_personality.yaml') # use class concept to choose a generating model, otherwise crack down | |
voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml') | |
# added for safe face generation | |
print('generate concept of', class_concept) | |
augment_word_list = ["Female ", "female ", "beautiful ", "small ", "cute "] | |
first_sentence = "Hello, how are you doing today?" | |
voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml') | |
talker = TTSTalker(selected_voice=selected_voice, gender=voice_conf['gender'], language=voice_conf['language']) | |
model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down | |
retry_cnt = 4 | |
if ref_image is None: | |
face_files = os.listdir(FACE_DIR) | |
face_img_path = os.path.join(FACE_DIR, random.choice(face_files)) | |
ref_image = Image.open(face_img_path) | |
print('loading face generating model') | |
anything_facemaker = load_face_generator( | |
model_dir=model_conf['model_dir'], | |
lora_path=model_conf['lora_path'], | |
prompt_template=model_conf['prompt_template'], | |
negative_prompt=model_conf['negative_prompt'], | |
) | |
retry_cnt = 0 | |
has_face = anything_facemaker.has_face(ref_image) | |
init_strength = 1.0 if has_face else 0.85 | |
strength_retry_step = -0.04 if has_face else 0.04 | |
while retry_cnt < 8: | |
try: | |
generate_face_image( | |
anything_facemaker, | |
class_concept, | |
ref_image, | |
uid=uid, | |
strength=init_strength if (retry_cnt==0 and has_face) else init_strength + retry_cnt * strength_retry_step, | |
controlnet_conditioning_scale=0.5 if retry_cnt == 8 else 0.3, | |
seed=seed, | |
) | |
self.do_html_video_speak(talker, first_sentence, fullbody, uid=uid) | |
video_file_path = os.path.join('tmp', uid, 'videos/tempfile.mp4') | |
htm_video = create_html_video( | |
video_file_path, TALKING_HEAD_WIDTH) | |
break | |
except Exception as e: | |
retry_cnt += 1 | |
class_concept = random.choice(augment_word_list) + class_concept | |
print(e) | |
# end of repeat block | |
return chain, memory, htm_video, talker | |
def update_talking_head(self, widget, uid, state): | |
print("success----------------") | |
if widget: | |
state = widget | |
temp_file = os.path.join('tmp', uid, 'videos') | |
video_html_talking_head = create_html_video( | |
temp_file, TALKING_HEAD_WIDTH) | |
return state, video_html_talking_head | |
else: | |
return None, "<pre></pre>" | |
def reset_memory(history, memory): | |
memory.clear() | |
history = [] | |
return history, history, memory | |
def create_html_video(file_name, width): | |
return file_name | |
def create_html_audio(file_name): | |
if os.path.exists(file_name): | |
tmp_audio_file = gr.File(file_name, visible=False) | |
tmp_aud_file_url = "/file=" + tmp_audio_file.value['name'] | |
html_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>' | |
del tmp_aud_file_url | |
else: | |
html_audio = f'' | |
return html_audio | |
def update_foo(widget, state): | |
if widget: | |
state = widget | |
return state | |
# Pertains to question answering functionality | |
def update_use_embeddings(widget, state): | |
if widget: | |
state = widget | |
return state | |
# This is the code for image generating. | |
def load_face_generator(model_dir, lora_path, prompt_template, negative_prompt): | |
from chat_anything.face_generator.long_prompt_control_generator import LongPromptControlGenerator | |
# # using local | |
model_zoo = "MODELS" | |
face_control_dir = os.path.join( | |
model_zoo, "Face-Landmark-ControlNet", "models_for_diffusers") | |
face_detect_path = os.path.join( | |
model_zoo, "SadTalker", "shape_predictor_68_face_landmarks.dat") | |
# use remote, hugginface auto-download. | |
# use your model path, has to be a model derived from stable diffusion v1-5 | |
anything_facemaker = LongPromptControlGenerator( | |
model_dir=model_dir, | |
lora_path=lora_path, | |
prompt_template=prompt_template, | |
negative_prompt=negative_prompt, | |
face_control_dir=face_control_dir, | |
face_detect_path=face_detect_path, | |
) | |
anything_facemaker.load_model(safety_checker=None) | |
return anything_facemaker | |
FACE_DIR="resources/images/faces" | |
def generate_face_image( | |
anything_facemaker, | |
class_concept, | |
face_img_pil, | |
uid=None, | |
controlnet_conditioning_scale=1.0, | |
strength=0.95, | |
seed=42, | |
): | |
face_img_pil = f.center_crop( | |
f.resize(face_img_pil, 512), 512).convert('RGB') | |
prompt = anything_facemaker.prompt_template.format(class_concept) | |
# # There are four ways to generate a image by now. | |
# pure_generate = anything_facemaker.generate(prompt=prompt, image=face_img_pil, do_inversion=False) | |
# inversion = anything_facemaker.generate(prompt=prompt, image=face_img_pil, strength=strength, do_inversion=True) | |
print('USING SEED:', seed) | |
generator = torch.Generator(device=anything_facemaker.face_control_pipe.device) | |
generator.manual_seed(seed) | |
if strength is None: | |
pure_control = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=False, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator) | |
init_face_pil = pure_control | |
else: | |
control_inversion = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=True, | |
strength=strength, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator) | |
init_face_pil = control_inversion | |
print('succeeded generating face image') | |
face_path = os.path.join('tmp', uid, 'images') | |
if not os.path.exists(face_path): | |
os.makedirs(face_path) | |
# TODO: reproduce the images for return, shouldn't use the filesystem | |
face_file_path = os.path.join(face_path, 'test.jpg') | |
init_face_pil.save(face_file_path) | |
return init_face_pil | |