DioulaD's picture
Update app.py
1afc5b2
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModel
from peft import PeftModel, PeftConfig
import torch
def load_peft_model():
peft_model_id = "DioulaD/falcon-7b-instruct-qlora-ge-dq-v2"
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b-instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
offload_folder="./offload"
)
model = PeftModel.from_pretrained(model, peft_model_id, offload_folder="./offload")
model = model.merge_and_unload()
config = PeftConfig.from_pretrained(peft_model_id)
tknizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tknizer.pad_token = tknizer.eos_token
return model, tknizer
model, tknizer = load_peft_model()
def get_expectations(prompt):
"""
Convert natural language query to great expectation methods using finetuned falcon 7b
Params:
prompt : Natural language query
model : Model download from huggingface hub
tknizer = Tokenizer from peft model
"""
try:
# If CUDA support is not available, encoding will silenty fail if cuda:0 is hardcoded
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
encoding = tknizer(prompt, return_tensors="pt").to(device)
with torch.inference_mode():
out = model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
max_new_tokens=100, do_sample=True, temperature=0.3,
eos_token_id=tknizer.eos_token_id,
top_k=0
)
response = tknizer.decode(out[0], skip_special_tokens=True)
return response.split("\n")[1]
except Exception as e:
print("An error occurred: ", e)
iface = gr.Interface(fn=get_expectations, inputs="text", outputs="text")
iface.launch()